云从科技与上海交大 AAAI 入选论文解读:语义角色标注新思路 get

栏目: 编程工具 · 发布时间: 5年前

雷锋网 (公众号:雷锋网) AI 科技评论消息,AAAI 2019 已于月初落幕,国内企业也在陆续公布自家被录用论文名单。本届大会共收到 7700 余篇有效投稿,其中 7095 篇论文进入评审环节,最终有 1150 篇论文被录用,录取率为 16.2%。

上海交通大学与云从科技联合创新实验室论文《Dependency or Span, End-to-End Uniform Semantic Role Labeling》被 AAAI 2019 录用,在这篇论文中,模型通过对谓词、论元评分,以及谓词和论元的一个双仿射变换,同时实现了对谓词的识别、以及谓词与论元的联合预测。以下为对该论文的详细解读。

云从科技与上海交大 AAAI 入选论文解读:语义角色标注新思路 get

语义角色标注(SRL)旨在发现句子的谓词-论元结构。它以句子的谓词为中心,分析句子中各成分与谓词之间的关系,即句子的谓词(Predicate)- 论元(Argument)结构。谓词是对主语的陈述或说明,指出“做什么”、“是什么”或“怎么样,代表了一个事件的核心,跟谓词搭配的名词称为论元。语义角色是指论元在动词所指事件中担任的角色。主要有:施事者(Agent)、受事者(Patient)、客体(Theme)、经验者(Experiencer)、受益者(Beneficiary)、工具(Instrument)、处所(Location)、目标(Goal)和来源(Source)等。

例如:“小明昨天晚上在公园遇到了小红。”

“遇到”是句子的谓词,“小明”是谓词的发起者,角色为“施事者”,“小红”是谓词的接受者,角色是“受事者”,“公园”是谓词的发生地点,据说是“处所”等。

作为自然语言处理的一项基础性任务,语义角色标注能提供上层应用的非常重要的语义信息。例如在阅读理解应用中,把语义角色标注作为输入的一部分,可以帮助阅读理解应用更加准确确定各部分的语义角色,从而提高阅读理解的准确性。

比如:“小明打了小华”和“小华被小明打了”,这两句话语义完全一致,但由于被动语态引起的主语和宾语位置上的变化,当提问“谁挨打了?”时,阅读理解算法在处理这两句时,有可能会给出不同的答案。但如果我们把语义角色标注也作为阅读理解的输入信息,由于两句话中“小华”都是“受事者”角色,问题也是在问“受事者”是谁,这时阅读理解算法往往比较容易给出一致准确的答案。

明确了一个句子中各个成分的语义角色,可以更好的帮助自然语言的理解和处理。比如在“信息提取”任务中,准确的提取出动作的发出者信息;在“阅读问答”中给出事件发生的时间、地点等。因此,语义角色标注时很多自然语言理解与处理任务的基础,对于实现自然语言处理意义非常重要。

传统的语义角色标注是建立在句法分析的基础上的,但由于构建准确的语法树比较困难,基于此方法的语义角色标注准确率并不高,因此,近年来无句法输入的端到端语义角色标注模型受到了广泛的关注。这些模型算法,根据对论元的表示不同,又划分为基于区间(span)和基于依存(dependency)两类方法,不同方法的模型只能在对应的论元表示形式上进行优化,不能扩展、应用到另一种论元表示上。

云从科技与上海交大 AAAI 入选论文解读:语义角色标注新思路 get

图一 Span与Dependency统一语义角色标注架构

我们的论文则通过提出一个统一的谓词与论元表示层,实现了将论元表示形式的统一(参见上图中的Predicate&Argument Representation层),因此,该模型可以接受不同论元表示形式的数据集进行训练。

此外,我们的模型通过对谓词、论元评分,以及谓词和论元的一个双仿射变换,同时实现了对谓词的识别、以及谓词与论元的联合预测(参见上图中Biaffine Scorer层)。我们的单一模型在CoNLL 2005、2012(基于Span的数据集)和CoNLL 2008、2009(基于Dependency的数据集)SRL基准数据集上,无论是在自主识别谓词、还是在给定谓词的情况下,相比于学术上目前已知的算法,都取得了较领先的结果,尤其是在span数据集、给定谓词的情况下,我们的单一模型甚至在所有指标上领先于已知的Ensemble模型。结果可参见表二、三、四、五。

云从科技与上海交大 AAAI 入选论文解读:语义角色标注新思路 get

图二 端到端设置下谓词与论元联合预测Span结果

云从科技与上海交大 AAAI 入选论文解读:语义角色标注新思路 get

图三 端到端设置下谓词与论元联合预测Dependency结果

云从科技与上海交大 AAAI 入选论文解读:语义角色标注新思路 get

图四 给定谓词情况下只预测论元Span结果

云从科技与上海交大 AAAI 入选论文解读:语义角色标注新思路 get

图五 给定谓词情况下只预测论元Dependency结果

1、本文报告了第一个在span和Dependency两种形式的语义角色标注的标准树库上同时获得最高精度的系统;

2、本文首次把目前最为有效的三大建模和机器学习要素集成到一个系统内,包括span选择模型、双仿射(biaffine)注意力机制以及预训练语言模型(ELMo);

3、本文首次针对依存形式的语义角色标注报告了超过90%的F值的里程碑精度。

论文地址: http://bcmi.sjtu.edu.cn/~zhaohai/pubs/aaai2019-UniSRL-1113-2.pdf

雷锋网版权文章,未经授权禁止转载。详情见 转载须知


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Google 广告高阶优化(第3版)

Google 广告高阶优化(第3版)

【美】Brad Geddes(布兰德.盖兹) / 宫鑫、康宁、王娜 / 电子工业出版社 / 2015-9 / 99.00元

《Google 广告高阶优化(第3版)》可以说是Google AdWords的终极指南,内容非常丰富,第三版在内容上进行了全面更新。介绍了AdWords的最新最完整的功能,阐释其工作原理,也提供了相应的优化方法、策略和实践教程,读者可以随时在自己的PPC广告系列中进行实践。第三版增添了50多页新内容,涵盖Google系统最近的所有变动,包括广告系列结构的变化、出价调整器、重定向、视频广告功能、全新......一起来看看 《Google 广告高阶优化(第3版)》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具