内容简介:TensorFlow是一个深度学习框架,支持Linux平台,Windows平台,Mac平台,甚至手机移动设备等各种平台。TensorFlow提供了非常丰富的深度学习相关的API,可以说目前所有深度学习框架里,提供的API最全的,包括基本的向量矩阵计算、各种优化算法、各种卷积神经网络和循环神经网络基本单元的实现、以及可视化的辅助工具、等等。基于TensorFlow的API是可以做其它语言绑定的,目前只有Python语言绑定是谷歌公司官方推荐和支持的,实现的功能也是最权威最完整的。除了对Python的大力支持外
TensorFlow是一个深度学习框架,支持 Linux 平台,Windows平台,Mac平台,甚至手机移动设备等各种平台。TensorFlow提供了非常丰富的深度学习相关的API,可以说目前所有深度学习框架里,提供的API最全的,包括基本的向量矩阵计算、各种优化算法、各种卷积神经网络和循环神经网络基本单元的实现、以及可视化的辅助 工具 、等等。
基于TensorFlow的API是可以做其它语言绑定的,目前只有 Python 语言绑定是谷歌公司官方推荐和支持的,实现的功能也是最权威最完整的。除了对Python的大力支持外,其它语言的绑定就显得非常弱小,几乎不能用。TensorFlow.NET是用C#语言对TensorFlow API进行绑定,并最大化保持Python的接口使用习惯,让其它模型代码能快速的迁移到.NET。
v0.3.0主要是新增了一个图像识别的示例程序和修复一些Bug。具体代码可以参考TensorFlowNET.Examples的LabelImage的 样例 。
private NDArray ReadTensorFromImageFile(string file_name, int input_height = 299, int input_width = 299, int input_mean = 0, int input_std = 255) { return with<Graph, NDArray>(tf.Graph().as_default(), graph => { var file_reader = tf.read_file(file_name, "file_reader"); var image_reader = tf.image.decode_jpeg(file_reader, channels: 3, name: "jpeg_reader"); var caster = tf.cast(image_reader, tf.float32); var dims_expander = tf.expand_dims(caster, 0); var resize = tf.constant(new int[] { input_height, input_width }); var bilinear = tf.image.resize_bilinear(dims_expander, resize); var sub = tf.subtract(bilinear, new float[] { input_mean }); var normalized = tf.divide(sub, new float[] { input_std }); return with<Session, NDArray>(tf.Session(graph), sess => sess.run(normalized)); }); }
2/18/2019 2:49:18 AM Starting LabelImage label_image_data\inception_v3_2016_08_28_frozen.pb.tar.gz already exists. label_image_data\grace_hopper.jpg already exists. 2019-02-18 20:49:19.499758: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 create_op: Const 'file_reader/filename', inputs: empty, control_inputs: empty, outputs: file_reader/filename:0 create_op: ReadFile 'file_reader', inputs: file_reader/filename:0, control_inputs: empty, outputs: file_reader:0 create_op: DecodeJpeg 'jpeg_reader', inputs: file_reader:0, control_inputs: empty, outputs: jpeg_reader:0 create_op: Cast 'Cast/Cast', inputs: jpeg_reader:0, control_inputs: empty, outputs: Cast/Cast:0 create_op: Const 'ExpandDims/dim', inputs: empty, control_inputs: empty, outputs: ExpandDims/dim:0 create_op: ExpandDims 'ExpandDims', inputs: Cast/Cast:0, ExpandDims/dim:0, control_inputs: empty, outputs: ExpandDims:0 create_op: Const 'Const', inputs: empty, control_inputs: empty, outputs: Const:0 create_op: ResizeBilinear 'ResizeBilinear', inputs: ExpandDims:0, Const:0, control_inputs: empty, outputs: ResizeBilinear:0 create_op: Const 'y', inputs: empty, control_inputs: empty, outputs: y:0 create_op: Sub 'Sub', inputs: ResizeBilinear:0, y:0, control_inputs: empty, outputs: Sub:0 create_op: Const 'y_1', inputs: empty, control_inputs: empty, outputs: y_1:0 create_op: RealDiv 'truediv', inputs: Sub:0, y_1:0, control_inputs: empty, outputs: truediv:0 grace_hopper.jpg: 653 military uniform, 0.8343058 grace_hopper.jpg: 668 mortarboard, 0.02186947 grace_hopper.jpg: 401 academic gown, 0.01035806 grace_hopper.jpg: 716 pickelhaube, 0.008008132 grace_hopper.jpg: 466 bulletproof vest, 0.005350832 2/19/2019 2:49:26 AM Completed LabelImage
文档地址: Document
仓库地址: Github
聊天室: Gitter
软件下载地址: NuGet
以上所述就是小编给大家介绍的《深度学习框架 TensorFlow.NET 0.3.0,新增图片识别示例》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- Quarkus框架入门之一:Quarkus框架介绍及简单示例 原 荐
- 深度学习框架 TensorFlow.NET 0.3.0,新增图片识别示例
- 通信框架 smart-socket 1.4.10 发布,bug 修复与示例补充
- 三, 跨语言微服务框架 - Istio官方示例(自动注入.请求路由.流量控制.故障注入) 原 荐
- 粒子滤波Matlab示例
- transformers示例
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Getting Real
Jason Fried、Heinemeier David Hansson、Matthew Linderman / 37signals / 2009-11-18 / USD 24.99
Getting Real details the business, design, programming, and marketing principles of 37signals. The book is packed with keep-it-simple insights, contrarian points of view, and unconventional approaches......一起来看看 《Getting Real》 这本书的介绍吧!
CSS 压缩/解压工具
在线压缩/解压 CSS 代码
JSON 在线解析
在线 JSON 格式化工具