ArcFace2 视频人脸比对教程

栏目: 编程工具 · 发布时间: 5年前

内容简介:请允许我大言不惭,叫做教程,特希望各位能指正。哦,我用的是vs2017。一、准备工作1.创建项目

请允许我大言不惭,叫做教程,特希望各位能指正。哦,我用的是vs2017。 使用虹软技术

一、准备工作

1.创建项目

ArcFace2 视频人脸比对教程

2.添加EMGU.CV包

3.复制虹软的dll到项目

,并设属性“复制到输出目录”为“如果较新则复制

准备工作到此结束,按F7切换到代码,然后进入第二步。

二、代码

using Emgu.CV;
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.IO;
using System.Runtime.InteropServices;
using System.Threading;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace ArcFace2Demo
{
    public partial class Form1 : Form
    {
        #region ArcFaceConst
        const uint ASF_DETECT_MODE_VIDEO = 0x00000000;  //Video模式,一般用于多帧连续检测
        const uint ASF_DETECT_MODE_IMAGE = 0xFFFFFFFF;  //Image模式,一般用于静态图的单次检测

        const uint ASF_NONE = 0x00000000;
        const uint ASF_FACE_DETECT = 0x00000001; //此处detect可以是tracking或者detection两个引擎之一,具体的选择由detect mode 确定
        const uint ASF_FACERECOGNITION = 0x00000004;
        const uint ASF_AGE = 0x00000008;
        const uint ASF_GENDER = 0x00000010;
        const uint ASF_FACE3DANGLE = 0x00000020;

        /// <summary>
        /// 结构ASF_FaceRect的长度
        /// 32位程序是16,64位程序需要改为32
        /// </summary>
        const int SizeOfASF_FaceRect = 16;

        #endregion


        #region ArceDataStructure
        /// <summary>
        /// 人脸在图片中的位置
        /// </summary>
        [StructLayout(LayoutKind.Sequential)]
        internal struct ASF_FaceRect
        {
            public int Left;
            public int Top;
            public int Right;
            public int Bottom;
            public Rectangle GetRectangle()
            {
                return new Rectangle(Left, Top, Right - Left, Bottom - Top);
            }
        }
        /// <summary>
        /// 多人脸信息
        /// </summary>
        [StructLayout(LayoutKind.Sequential)]
        internal struct ASF_MultiFaceInfo
        {

            public IntPtr PFaceRect;
            public IntPtr PFaceOrient;
            [MarshalAs(UnmanagedType.I4)]
            public int FaceNum;
        }


        /// <summary>
        /// 单人脸信息
        /// </summary>
        [StructLayout(LayoutKind.Sequential)]
        internal struct ASF_SingleFaceInfo
        {
            public ASF_FaceRect FaceRect;
            public int FaceOrient;

        }



        /// <summary>
        /// 人脸特征
        /// </summary>
        [StructLayout(LayoutKind.Sequential)]
        internal struct ASF_FaceFeature
        {
            public IntPtr PFeature;
            [MarshalAs(UnmanagedType.I4)]
            public int FeatureSize;
        }


        #endregion

        #region ArcWrapper

        /// <summary>
        /// 激活SDK
        /// </summary>
        /// <param name="appId"></param>
        /// <param name="sdkKey"></param>
        /// <returns>0:激活成功,0x16002表示已经激活</returns>
        [DllImport("libarcsoft_face_engine.dll", EntryPoint = "ASFActivation", CallingConvention = CallingConvention.Cdecl, CharSet = CharSet.Ansi)]
        private static extern int ASFActivation(string appId, string sdkKey);

        /// <summary>
        /// 初始化引擎
        /// </summary>
        /// <param name="detectMode">long会返回scale错误0x16004</param>
        /// <param name="orientPriority"></param>
        /// <param name="scale"></param>
        /// <param name="maxFaceNumber"></param>
        /// <param name="combinedMask"></param>
        /// <param name="pEngine"></param>
        /// <returns></returns>
        [DllImport("libarcsoft_face_engine.dll", EntryPoint = "ASFInitEngine", CallingConvention = CallingConvention.Cdecl, CharSet = CharSet.Ansi)]
        private static extern int ASFInitEngine(uint detectMode, int orientPriority, int scale, int maxFaceNumber, uint combinedMask, out IntPtr pEngine);
        /// <summary>
        /// 人脸检测
        /// </summary>
        /// <param name="pEngine"></param>
        /// <param name="width"></param>
        /// <param name="height"></param>
        /// <param name="format"></param>
        /// <param name="pImageData"></param>
        /// <param name="faceInfo"></param>
        /// <returns></returns>
        [DllImport("libarcsoft_face_engine.dll", EntryPoint = "ASFDetectFaces", CallingConvention = CallingConvention.Cdecl, CharSet = CharSet.Ansi)]
        private static extern int ASFDetectFaces(IntPtr pEngine, int width, int height, int format, IntPtr pImageData, out ASF_MultiFaceInfo faceInfo);

        /// <summary>
        /// 单人脸特征提取
        /// </summary>
        /// <param name="pEngine"></param>
        /// <param name="width"></param>
        /// <param name="height"></param>
        /// <param name="format"></param>
        /// <param name="faceInfo"></param>
        /// <param name="faceFeature"></param>
        /// <returns></returns>
        [DllImport("libarcsoft_face_engine.dll", EntryPoint = "ASFFaceFeatureExtract", CallingConvention = CallingConvention.Cdecl, CharSet = CharSet.Ansi)]
        private static extern int ASFFaceFeatureExtract(IntPtr pEngine, int width, int height, int format, IntPtr pImageData, ref ASF_SingleFaceInfo faceInfo, out ASF_FaceFeature faceFeature);
        /// <summary>
        /// 脸特征比对
        /// </summary>
        /// <param name="pEngine"></param>
        /// <param name="faceFeature1"></param>
        /// <param name="faceFeature2"></param>
        /// <param name="result"></param>
        /// <returns></returns>
        [DllImport("libarcsoft_face_engine.dll", EntryPoint = "ASFFaceFeatureCompare", CallingConvention = CallingConvention.Cdecl, CharSet = CharSet.Ansi)]
        private static extern int ASFFaceFeatureCompare(IntPtr pEngine, ref ASF_FaceFeature faceFeature1, ref ASF_FaceFeature faceFeature2, out float result);
        /// <summary>
        /// 销毁引擎
        /// </summary>
        /// <param name="engine"></param>
        /// <returns></returns>
        [DllImport("libarcsoft_face_engine.dll", EntryPoint = "ASFUninitEngine", CallingConvention = CallingConvention.Cdecl, CharSet = CharSet.Ansi)]
        private static extern int ASFUninitEngine(IntPtr engine);
        #endregion

        /// <summary>
        /// 特征库
        /// </summary>
        IntPtr _PFeatureLib;
        /// <summary>
        /// 特征库人脸数量
        /// </summary>
        int _FeatureLibFaceCount = 0;
        /// <summary>
        /// 特征库人脸ID列表
        /// </summary>
        List<string> _FeatureLibIDList = new List<string>();

        /// <summary>
        /// 人脸特征结构
        /// </summary>
        ASF_FaceFeature _FaceFeature = new ASF_FaceFeature { FeatureSize = 1032 };

        /// <summary>
        /// 人脸识别的结果
        /// </summary>
        class FaceResult
        {
            /// <summary>
            /// 人脸框矩形
            /// </summary>
            public Rectangle Rectangle { get; set; }
            /// <summary>
            /// 人脸ID
            /// </summary>
            public string ID { get; set; }
            /// <summary>
            /// 比对结果
            /// </summary>
            public float Score { get; set; }

            public override string ToString()
            {
                return [        DISCUZ_CODE_0        ]quot;ID:{ID}\r\n结果:{Score}";
            }
        }
        /// <summary>
        /// 多人脸识别结果集
        /// </summary>
        ConcurrentDictionary<int, FaceResult> _FaceResults = new ConcurrentDictionary<int, FaceResult>();
        /// <summary>
        /// 检测到的人脸数量
        /// </summary>
        int _DetectedFaceCount = 0;

        /// <summary>
        /// 视频捕获
        /// </summary>
        VideoCapture _VideoCapture;
        Mat _Frame = new Mat();

        /// <summary>
        /// 虹软人脸引擎
        /// </summary>
        IntPtr _PEngine = IntPtr.Zero;

        /// <summary>
        /// 比对一次总耗时
        /// </summary>
        long _TotalElapsedMilliseconds = 0;
        /// <summary>
        /// 识别任务
        /// </summary>
        Task _TaskMatch;
        /// <summary>
        /// 向识别任务发送取消指令的东东
        /// </summary>
        CancellationTokenSource _CTS = new CancellationTokenSource();

        /// <summary>
        /// 图像数据
        /// </summary>
        IntPtr _PImageData;
        /// <summary>
        /// 宽、高、图像数据长度
        /// </summary>
        int _ImageWidth, _ImageHeight, _ImageSize;
        /// <summary>
        /// 是否要保存当前人脸特征
        /// </summary>
        bool _SaveFlag = false;

        PictureBox _PictureBox;

        public Form1()
        {
            InitializeComponent();

            _PictureBox = new PictureBox();
            _PictureBox.SizeMode = PictureBoxSizeMode.StretchImage;
            _PictureBox.Dock = DockStyle.Fill;
            this.Controls.Add(_PictureBox);

            this.Load += Form1_Load;
            this.FormClosing += Form1_FormClosing;
        }

        private void Form1_FormClosing(object sender, FormClosingEventArgs e)
        {
            if (_TaskMatch != null)
            {
                _CTS.Cancel();
                while (_TaskMatch.Status == TaskStatus.Running)
                    Task.Delay(1000).Wait();
            }
            _VideoCapture.Stop();

            if (_PEngine != IntPtr.Zero)
                ASFUninitEngine(_PEngine);

            if (_PFeatureLib != IntPtr.Zero)
                Marshal.FreeCoTaskMem(_PFeatureLib);

            if (_PImageData != IntPtr.Zero)
                Marshal.FreeCoTaskMem(_PImageData);
        }

        private unsafe void Form1_Load(object sender, EventArgs e)
        {
            var ret = ASFActivation("BKgqTWQPQQbomfqvyd2VJzTUqPp3JD8zjAzDcqsL1jLa", "2nkDTmnkpS53cpSY42fFS9nEUzg8x4MDGkAubSsebtm1");
            if (ret != 0 && ret != 0x16002)
            {
                MessageBox.Show("SDK激活失败:0x" + ret.ToString("x2"));
                return;
            }
            ret = ASFInitEngine(ASF_DETECT_MODE_IMAGE, 1, 32, 10, ASF_FACE_DETECT | ASF_FACERECOGNITION, out _PEngine);
            if (ret != 0)
            {
                MessageBox.Show([        DISCUZ_CODE_0        ]quot;人脸识别引擎初始化失败:" + ret.ToString("x2"));
                return;
            }
            //初始化识别结果集
            for (int i = 0; i < 10; i++)
                _FaceResults[i] = new FaceResult();
            //初始化特征库
            _PFeatureLib = Marshal.AllocCoTaskMem(1032 * 1000 + 1032 * 10000 * 20);
            var bytes = File.ReadAllBytes("Feature.dat");
            var ids = File.ReadAllLines("Id.txt");
            for (int i = 0; i < 20 * 20; i++)
            {
                Marshal.Copy(bytes, 0, IntPtr.Add(_PFeatureLib, _FeatureLibFaceCount * 1032), bytes.Length);
                _FeatureLibIDList.AddRange(ids);
                _FeatureLibFaceCount += ids.Length;
            }

            _VideoCapture = new VideoCapture();


            //_VideoCapture.SetCaptureProperty(Emgu.CV.CvEnum.CapProp.FrameWidth, 1024);
            //_VideoCapture.SetCaptureProperty(Emgu.CV.CvEnum.CapProp.FrameHeight, 768);
            _VideoCapture.SetCaptureProperty(Emgu.CV.CvEnum.CapProp.Fps, 10);
            _VideoCapture.Start();

            _VideoCapture.ImageGrabbed += (object oo, EventArgs es) =>
            {
                _VideoCapture.Retrieve(_Frame, 1);
                using (Graphics g = Graphics.FromImage(_Frame.Bitmap))
                {
                    g.DrawString([        DISCUZ_CODE_0        ]quot;比对总耗时{_TotalElapsedMilliseconds}毫秒", this.Font, Brushes.White, 0, 0);
                    for (int i = 0; i < _DetectedFaceCount; i++)
                    {
                        if (_FaceResults.TryGetValue(i, out var faceResult))
                        {
                            g.DrawRectangle(Pens.Red, faceResult.Rectangle);
                            g.DrawString(faceResult.ToString(), this.Font, Brushes.White, faceResult.Rectangle.Location);
                        }
                    }
                }
                this._PictureBox.Image = _Frame.Bitmap;
            };

            _PictureBox.Click += (object oo, EventArgs es) =>
            {
                if (MessageBox.Show("您确定要保存人脸特征数据吗?", "确认信息", MessageBoxButtons.YesNo, MessageBoxIcon.Question, MessageBoxDefaultButton.Button2) == DialogResult.Yes)
                    _SaveFlag = true;
            };

            _ImageSize = _VideoCapture.Width * _VideoCapture.Height * 3;
            _PImageData = Marshal.AllocCoTaskMem(_ImageSize);
            _ImageWidth = _VideoCapture.Width;
            _ImageHeight = _VideoCapture.Height;



            _TaskMatch = Task.Run(() =>
            {
                Task.Delay(1000).Wait();

                while (!_CTS.IsCancellationRequested)
                {
                    try
                    {
                        Stopwatch sw = new Stopwatch();
                        sw.Restart();

                        Marshal.Copy(_Frame.GetData(), 0, _PImageData, _ImageSize);
                        ret = ASFDetectFaces(_PEngine, _ImageWidth, _ImageHeight, 513, _PImageData, out var faceInfo);

                        if (ret != 0 || faceInfo.FaceNum == 0)
                        {
                            _DetectedFaceCount = 0;
                            continue;
                        }

                        for (int detectedFaceIndex = 0; detectedFaceIndex < faceInfo.FaceNum; detectedFaceIndex++)
                        {

                            float score = 0;
                            string id = "";
                            ASF_SingleFaceInfo singleFaceInfo = new ASF_SingleFaceInfo
                            {
                                FaceRect = Marshal.PtrToStructure<ASF_FaceRect>(IntPtr.Add(faceInfo.PFaceRect, SizeOfASF_FaceRect * detectedFaceIndex)),
                                FaceOrient = 1// Marshal.ReadInt32(IntPtr.Add(faceInfo.PFaceOrient, i * 4))
                            };


                            ret = ASFFaceFeatureExtract(_PEngine, _ImageWidth, _ImageHeight, 513, _PImageData, ref singleFaceInfo, out var faceFeature);
                            if (ret != 0)
                                continue;
                            _FaceResults[detectedFaceIndex].Rectangle = singleFaceInfo.FaceRect.GetRectangle();


                            if (_SaveFlag)
                            {
                                byte[] bufferSave = new byte[1032];
                                Marshal.Copy(faceFeature.PFeature, bufferSave, 0, 1032);
                                var newId = DateTime.Now.Ticks.ToString();

                                FileStream fs = new FileStream("Feature.dat", FileMode.Append);
                                fs.Write(bufferSave, 0, 1032);
                                fs.Close();

                                var streamWriter = File.AppendText("Id.txt");
                                streamWriter.Write("\r\n" + newId);
                                streamWriter.Close();

                                Marshal.Copy(bufferSave, 0, IntPtr.Add(_PFeatureLib, 1032 * _FeatureLibFaceCount), 1032);
                                _FeatureLibIDList.Add(newId);
                                _FeatureLibFaceCount++;

                                if (detectedFaceIndex == faceInfo.FaceNum - 1)
                                {
                                    MessageBox.Show("保存特征数据成功!");
                                    _SaveFlag = false;
                                }
                                continue;
                            }



                            ConcurrentBag<int> needCompareFaceIndexs = new ConcurrentBag<int>();

                            Parallel.For(0, _FeatureLibFaceCount, faceIndex =>
                            {

                                byte* pLib = ((byte*)_PFeatureLib) + 1032 * faceIndex + 8;
                                byte* pCurrent = ((byte*)faceFeature.PFeature) + 8;
                                int count = 0;
                                for (int j = 0; j < 1024; j++)
                                {
                                    if (*pLib++ == *pCurrent++)
                                        count++;
                                }
                                if (count > 80)
                                    needCompareFaceIndexs.Add(faceIndex);
                            });

                            foreach (var index in needCompareFaceIndexs)//650ms
                            {
                                _FaceFeature.PFeature = IntPtr.Add(_PFeatureLib, index * 1032);
                                ASFFaceFeatureCompare(_PEngine, ref faceFeature, ref _FaceFeature, out var r);

                                if (r > 0.8 && r > score)
                                {
                                    score = r;
                                    id = _FeatureLibIDList[index];
                                }
                            }

                            _FaceResults[detectedFaceIndex].Score = score;
                            _FaceResults[detectedFaceIndex].ID = id;
                        }


                        _DetectedFaceCount = faceInfo.FaceNum;

                        sw.Stop();
                        _TotalElapsedMilliseconds = sw.ElapsedMilliseconds;

                    }
                    catch (Exception ex)
                    {

                    }
                }
            }, _CTS.Token);

        }


    }
}

三、下载测试用特征数据(500张人脸)并解压到运行目录

ArcFaceData.zip (463.7 KB, 下载次数: 0)

四、按F5运行

点击视频增加当前人脸的特征数据,基本上800毫秒可以从20万人脸中找到你。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

HTTP Essentials

HTTP Essentials

Stephen A. Thomas、Stephen Thomas / Wiley / 2001-03-08 / USD 34.99

The first complete reference guide to the essential Web protocol As applications and services converge and Web technologies not only assume HTTP but require developers to manipulate it, it is be......一起来看看 《HTTP Essentials》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码