内容简介:请允许我大言不惭,叫做教程,特希望各位能指正。哦,我用的是vs2017。一、准备工作1.创建项目
请允许我大言不惭,叫做教程,特希望各位能指正。哦,我用的是vs2017。 使用虹软技术
一、准备工作
1.创建项目
2.添加EMGU.CV包
3.复制虹软的dll到项目
,并设属性“复制到输出目录”为“如果较新则复制
准备工作到此结束,按F7切换到代码,然后进入第二步。
二、代码
using Emgu.CV; using System; using System.Collections.Concurrent; using System.Collections.Generic; using System.Diagnostics; using System.Drawing; using System.IO; using System.Runtime.InteropServices; using System.Threading; using System.Threading.Tasks; using System.Windows.Forms; namespace ArcFace2Demo { public partial class Form1 : Form { #region ArcFaceConst const uint ASF_DETECT_MODE_VIDEO = 0x00000000; //Video模式,一般用于多帧连续检测 const uint ASF_DETECT_MODE_IMAGE = 0xFFFFFFFF; //Image模式,一般用于静态图的单次检测 const uint ASF_NONE = 0x00000000; const uint ASF_FACE_DETECT = 0x00000001; //此处detect可以是tracking或者detection两个引擎之一,具体的选择由detect mode 确定 const uint ASF_FACERECOGNITION = 0x00000004; const uint ASF_AGE = 0x00000008; const uint ASF_GENDER = 0x00000010; const uint ASF_FACE3DANGLE = 0x00000020; /// <summary> /// 结构ASF_FaceRect的长度 /// 32位程序是16,64位程序需要改为32 /// </summary> const int SizeOfASF_FaceRect = 16; #endregion #region ArceDataStructure /// <summary> /// 人脸在图片中的位置 /// </summary> [StructLayout(LayoutKind.Sequential)] internal struct ASF_FaceRect { public int Left; public int Top; public int Right; public int Bottom; public Rectangle GetRectangle() { return new Rectangle(Left, Top, Right - Left, Bottom - Top); } } /// <summary> /// 多人脸信息 /// </summary> [StructLayout(LayoutKind.Sequential)] internal struct ASF_MultiFaceInfo { public IntPtr PFaceRect; public IntPtr PFaceOrient; [MarshalAs(UnmanagedType.I4)] public int FaceNum; } /// <summary> /// 单人脸信息 /// </summary> [StructLayout(LayoutKind.Sequential)] internal struct ASF_SingleFaceInfo { public ASF_FaceRect FaceRect; public int FaceOrient; } /// <summary> /// 人脸特征 /// </summary> [StructLayout(LayoutKind.Sequential)] internal struct ASF_FaceFeature { public IntPtr PFeature; [MarshalAs(UnmanagedType.I4)] public int FeatureSize; } #endregion #region ArcWrapper /// <summary> /// 激活SDK /// </summary> /// <param name="appId"></param> /// <param name="sdkKey"></param> /// <returns>0:激活成功,0x16002表示已经激活</returns> [DllImport("libarcsoft_face_engine.dll", EntryPoint = "ASFActivation", CallingConvention = CallingConvention.Cdecl, CharSet = CharSet.Ansi)] private static extern int ASFActivation(string appId, string sdkKey); /// <summary> /// 初始化引擎 /// </summary> /// <param name="detectMode">long会返回scale错误0x16004</param> /// <param name="orientPriority"></param> /// <param name="scale"></param> /// <param name="maxFaceNumber"></param> /// <param name="combinedMask"></param> /// <param name="pEngine"></param> /// <returns></returns> [DllImport("libarcsoft_face_engine.dll", EntryPoint = "ASFInitEngine", CallingConvention = CallingConvention.Cdecl, CharSet = CharSet.Ansi)] private static extern int ASFInitEngine(uint detectMode, int orientPriority, int scale, int maxFaceNumber, uint combinedMask, out IntPtr pEngine); /// <summary> /// 人脸检测 /// </summary> /// <param name="pEngine"></param> /// <param name="width"></param> /// <param name="height"></param> /// <param name="format"></param> /// <param name="pImageData"></param> /// <param name="faceInfo"></param> /// <returns></returns> [DllImport("libarcsoft_face_engine.dll", EntryPoint = "ASFDetectFaces", CallingConvention = CallingConvention.Cdecl, CharSet = CharSet.Ansi)] private static extern int ASFDetectFaces(IntPtr pEngine, int width, int height, int format, IntPtr pImageData, out ASF_MultiFaceInfo faceInfo); /// <summary> /// 单人脸特征提取 /// </summary> /// <param name="pEngine"></param> /// <param name="width"></param> /// <param name="height"></param> /// <param name="format"></param> /// <param name="faceInfo"></param> /// <param name="faceFeature"></param> /// <returns></returns> [DllImport("libarcsoft_face_engine.dll", EntryPoint = "ASFFaceFeatureExtract", CallingConvention = CallingConvention.Cdecl, CharSet = CharSet.Ansi)] private static extern int ASFFaceFeatureExtract(IntPtr pEngine, int width, int height, int format, IntPtr pImageData, ref ASF_SingleFaceInfo faceInfo, out ASF_FaceFeature faceFeature); /// <summary> /// 脸特征比对 /// </summary> /// <param name="pEngine"></param> /// <param name="faceFeature1"></param> /// <param name="faceFeature2"></param> /// <param name="result"></param> /// <returns></returns> [DllImport("libarcsoft_face_engine.dll", EntryPoint = "ASFFaceFeatureCompare", CallingConvention = CallingConvention.Cdecl, CharSet = CharSet.Ansi)] private static extern int ASFFaceFeatureCompare(IntPtr pEngine, ref ASF_FaceFeature faceFeature1, ref ASF_FaceFeature faceFeature2, out float result); /// <summary> /// 销毁引擎 /// </summary> /// <param name="engine"></param> /// <returns></returns> [DllImport("libarcsoft_face_engine.dll", EntryPoint = "ASFUninitEngine", CallingConvention = CallingConvention.Cdecl, CharSet = CharSet.Ansi)] private static extern int ASFUninitEngine(IntPtr engine); #endregion /// <summary> /// 特征库 /// </summary> IntPtr _PFeatureLib; /// <summary> /// 特征库人脸数量 /// </summary> int _FeatureLibFaceCount = 0; /// <summary> /// 特征库人脸ID列表 /// </summary> List<string> _FeatureLibIDList = new List<string>(); /// <summary> /// 人脸特征结构 /// </summary> ASF_FaceFeature _FaceFeature = new ASF_FaceFeature { FeatureSize = 1032 }; /// <summary> /// 人脸识别的结果 /// </summary> class FaceResult { /// <summary> /// 人脸框矩形 /// </summary> public Rectangle Rectangle { get; set; } /// <summary> /// 人脸ID /// </summary> public string ID { get; set; } /// <summary> /// 比对结果 /// </summary> public float Score { get; set; } public override string ToString() { return [ DISCUZ_CODE_0 ]quot;ID:{ID}\r\n结果:{Score}"; } } /// <summary> /// 多人脸识别结果集 /// </summary> ConcurrentDictionary<int, FaceResult> _FaceResults = new ConcurrentDictionary<int, FaceResult>(); /// <summary> /// 检测到的人脸数量 /// </summary> int _DetectedFaceCount = 0; /// <summary> /// 视频捕获 /// </summary> VideoCapture _VideoCapture; Mat _Frame = new Mat(); /// <summary> /// 虹软人脸引擎 /// </summary> IntPtr _PEngine = IntPtr.Zero; /// <summary> /// 比对一次总耗时 /// </summary> long _TotalElapsedMilliseconds = 0; /// <summary> /// 识别任务 /// </summary> Task _TaskMatch; /// <summary> /// 向识别任务发送取消指令的东东 /// </summary> CancellationTokenSource _CTS = new CancellationTokenSource(); /// <summary> /// 图像数据 /// </summary> IntPtr _PImageData; /// <summary> /// 宽、高、图像数据长度 /// </summary> int _ImageWidth, _ImageHeight, _ImageSize; /// <summary> /// 是否要保存当前人脸特征 /// </summary> bool _SaveFlag = false; PictureBox _PictureBox; public Form1() { InitializeComponent(); _PictureBox = new PictureBox(); _PictureBox.SizeMode = PictureBoxSizeMode.StretchImage; _PictureBox.Dock = DockStyle.Fill; this.Controls.Add(_PictureBox); this.Load += Form1_Load; this.FormClosing += Form1_FormClosing; } private void Form1_FormClosing(object sender, FormClosingEventArgs e) { if (_TaskMatch != null) { _CTS.Cancel(); while (_TaskMatch.Status == TaskStatus.Running) Task.Delay(1000).Wait(); } _VideoCapture.Stop(); if (_PEngine != IntPtr.Zero) ASFUninitEngine(_PEngine); if (_PFeatureLib != IntPtr.Zero) Marshal.FreeCoTaskMem(_PFeatureLib); if (_PImageData != IntPtr.Zero) Marshal.FreeCoTaskMem(_PImageData); } private unsafe void Form1_Load(object sender, EventArgs e) { var ret = ASFActivation("BKgqTWQPQQbomfqvyd2VJzTUqPp3JD8zjAzDcqsL1jLa", "2nkDTmnkpS53cpSY42fFS9nEUzg8x4MDGkAubSsebtm1"); if (ret != 0 && ret != 0x16002) { MessageBox.Show("SDK激活失败:0x" + ret.ToString("x2")); return; } ret = ASFInitEngine(ASF_DETECT_MODE_IMAGE, 1, 32, 10, ASF_FACE_DETECT | ASF_FACERECOGNITION, out _PEngine); if (ret != 0) { MessageBox.Show([ DISCUZ_CODE_0 ]quot;人脸识别引擎初始化失败:" + ret.ToString("x2")); return; } //初始化识别结果集 for (int i = 0; i < 10; i++) _FaceResults[i] = new FaceResult(); //初始化特征库 _PFeatureLib = Marshal.AllocCoTaskMem(1032 * 1000 + 1032 * 10000 * 20); var bytes = File.ReadAllBytes("Feature.dat"); var ids = File.ReadAllLines("Id.txt"); for (int i = 0; i < 20 * 20; i++) { Marshal.Copy(bytes, 0, IntPtr.Add(_PFeatureLib, _FeatureLibFaceCount * 1032), bytes.Length); _FeatureLibIDList.AddRange(ids); _FeatureLibFaceCount += ids.Length; } _VideoCapture = new VideoCapture(); //_VideoCapture.SetCaptureProperty(Emgu.CV.CvEnum.CapProp.FrameWidth, 1024); //_VideoCapture.SetCaptureProperty(Emgu.CV.CvEnum.CapProp.FrameHeight, 768); _VideoCapture.SetCaptureProperty(Emgu.CV.CvEnum.CapProp.Fps, 10); _VideoCapture.Start(); _VideoCapture.ImageGrabbed += (object oo, EventArgs es) => { _VideoCapture.Retrieve(_Frame, 1); using (Graphics g = Graphics.FromImage(_Frame.Bitmap)) { g.DrawString([ DISCUZ_CODE_0 ]quot;比对总耗时{_TotalElapsedMilliseconds}毫秒", this.Font, Brushes.White, 0, 0); for (int i = 0; i < _DetectedFaceCount; i++) { if (_FaceResults.TryGetValue(i, out var faceResult)) { g.DrawRectangle(Pens.Red, faceResult.Rectangle); g.DrawString(faceResult.ToString(), this.Font, Brushes.White, faceResult.Rectangle.Location); } } } this._PictureBox.Image = _Frame.Bitmap; }; _PictureBox.Click += (object oo, EventArgs es) => { if (MessageBox.Show("您确定要保存人脸特征数据吗?", "确认信息", MessageBoxButtons.YesNo, MessageBoxIcon.Question, MessageBoxDefaultButton.Button2) == DialogResult.Yes) _SaveFlag = true; }; _ImageSize = _VideoCapture.Width * _VideoCapture.Height * 3; _PImageData = Marshal.AllocCoTaskMem(_ImageSize); _ImageWidth = _VideoCapture.Width; _ImageHeight = _VideoCapture.Height; _TaskMatch = Task.Run(() => { Task.Delay(1000).Wait(); while (!_CTS.IsCancellationRequested) { try { Stopwatch sw = new Stopwatch(); sw.Restart(); Marshal.Copy(_Frame.GetData(), 0, _PImageData, _ImageSize); ret = ASFDetectFaces(_PEngine, _ImageWidth, _ImageHeight, 513, _PImageData, out var faceInfo); if (ret != 0 || faceInfo.FaceNum == 0) { _DetectedFaceCount = 0; continue; } for (int detectedFaceIndex = 0; detectedFaceIndex < faceInfo.FaceNum; detectedFaceIndex++) { float score = 0; string id = ""; ASF_SingleFaceInfo singleFaceInfo = new ASF_SingleFaceInfo { FaceRect = Marshal.PtrToStructure<ASF_FaceRect>(IntPtr.Add(faceInfo.PFaceRect, SizeOfASF_FaceRect * detectedFaceIndex)), FaceOrient = 1// Marshal.ReadInt32(IntPtr.Add(faceInfo.PFaceOrient, i * 4)) }; ret = ASFFaceFeatureExtract(_PEngine, _ImageWidth, _ImageHeight, 513, _PImageData, ref singleFaceInfo, out var faceFeature); if (ret != 0) continue; _FaceResults[detectedFaceIndex].Rectangle = singleFaceInfo.FaceRect.GetRectangle(); if (_SaveFlag) { byte[] bufferSave = new byte[1032]; Marshal.Copy(faceFeature.PFeature, bufferSave, 0, 1032); var newId = DateTime.Now.Ticks.ToString(); FileStream fs = new FileStream("Feature.dat", FileMode.Append); fs.Write(bufferSave, 0, 1032); fs.Close(); var streamWriter = File.AppendText("Id.txt"); streamWriter.Write("\r\n" + newId); streamWriter.Close(); Marshal.Copy(bufferSave, 0, IntPtr.Add(_PFeatureLib, 1032 * _FeatureLibFaceCount), 1032); _FeatureLibIDList.Add(newId); _FeatureLibFaceCount++; if (detectedFaceIndex == faceInfo.FaceNum - 1) { MessageBox.Show("保存特征数据成功!"); _SaveFlag = false; } continue; } ConcurrentBag<int> needCompareFaceIndexs = new ConcurrentBag<int>(); Parallel.For(0, _FeatureLibFaceCount, faceIndex => { byte* pLib = ((byte*)_PFeatureLib) + 1032 * faceIndex + 8; byte* pCurrent = ((byte*)faceFeature.PFeature) + 8; int count = 0; for (int j = 0; j < 1024; j++) { if (*pLib++ == *pCurrent++) count++; } if (count > 80) needCompareFaceIndexs.Add(faceIndex); }); foreach (var index in needCompareFaceIndexs)//650ms { _FaceFeature.PFeature = IntPtr.Add(_PFeatureLib, index * 1032); ASFFaceFeatureCompare(_PEngine, ref faceFeature, ref _FaceFeature, out var r); if (r > 0.8 && r > score) { score = r; id = _FeatureLibIDList[index]; } } _FaceResults[detectedFaceIndex].Score = score; _FaceResults[detectedFaceIndex].ID = id; } _DetectedFaceCount = faceInfo.FaceNum; sw.Stop(); _TotalElapsedMilliseconds = sw.ElapsedMilliseconds; } catch (Exception ex) { } } }, _CTS.Token); } } }
三、下载测试用特征数据(500张人脸)并解压到运行目录
ArcFaceData.zip (463.7 KB, 下载次数: 0)
四、按F5运行
点击视频增加当前人脸的特征数据,基本上800毫秒可以从20万人脸中找到你。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 应用层下的人脸识别(三):人脸比对
- 码云推荐 | 基于人脸识别与身份证的访客比对系统
- MySQL数据类型选择性能比对
- Linux下9种优秀的代码比对工具推荐
- 带有业务逻辑的比对思想在接口测试中的应用
- 不吹不黑比对下React与Vue的差异与优劣
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
互联网创业核心技术:构建可伸缩的web应用
【美】Artur Ejsmont / 李智慧、何坤 / 电子工业出版社 / 2016-12 / 89
可伸缩架构技术是所有互联网技术中最重要,也是最引人入胜的技术。《互联网创业核心技术:构建可伸缩的web应用》针对互联网创业需求快速迭代,业务快速发展,短时间内用户、数据、访问量激增的特点,提纲挈领地描述了伸缩性架构的基本原理与设计原则,详细阐述了Web应用前端层、服务层、数据层的可伸缩架构,并花大量篇幅讲述了缓存技术和异步处理技术的可伸缩设计及其在Web系统中的具体应用。 《互联网创业核心技......一起来看看 《互联网创业核心技术:构建可伸缩的web应用》 这本书的介绍吧!