相对友好的 AVL Tree 教程

栏目: 编程工具 · 发布时间: 5年前

内容简介:之前学习了二叉搜索树,知道这种结构基于折半的原理,在查找的时候效率很高,理想的情况下时间复杂度为 O(log n) ,那不理想的情况又是怎样的呢?举个例子,根据二叉搜索树的特性,插入 { 6,5,4,3,2,1 } 这组数据,最终生成的二叉树如下:要判断这棵树中是否存在 1 。 1 处在这棵树的最底部,并且这个棵树呈现出一边倒的形状,导致找 1 时遍历了所有的节点,这种情况下时间复杂度为 O(n) 。可见一旦二叉搜索树失去了平衡也就失去了效率,理想的二叉搜索树,是树的节点“均匀”分布在根节点两侧,才能满足时

之前学习了二叉搜索树,知道这种结构基于折半的原理,在查找的时候效率很高,理想的情况下时间复杂度为 O(log n) ,那不理想的情况又是怎样的呢?举个例子,根据二叉搜索树的特性,插入 { 6,5,4,3,2,1 } 这组数据,最终生成的二叉树如下:

相对友好的 AVL Tree 教程

要判断这棵树中是否存在 1 。 1 处在这棵树的最底部,并且这个棵树呈现出一边倒的形状,导致找 1 时遍历了所有的节点,这种情况下时间复杂度为 O(n) 。可见一旦二叉搜索树失去了平衡也就失去了效率,理想的二叉搜索树,是树的节点“均匀”分布在根节点两侧,才能满足时间复杂度 O(log n) 。

平衡的定义

怎样才算“均匀”分布呢?对于树中的节点,不能只让左或右孩子独得恩宠,雨露均沾才是王道。Wikipedia 给出了定义:

二叉搜索树中,对于任意节点, 子树与 子树高度差不超过 1 ,则认为这棵树是平衡的。

这个定义有个官方的名字 平衡因子 (Balance factor),平衡因子只可能是「1,0,-1」, 注意是右子树的高度 - 左子树的高度 。有了这个规定,失衡的现象就能有所缓解了。俗话说不患贫而患不均,虽然「1,-1」目前是可接受的,却为将来的失衡埋下伏笔。这种导致失衡的隐患Wikipedia 给出了定义:

平衡因子为 1 则该节点 右重(right-heavy) ,平衡因子为 -1 则该节点 左重(left-heavy)

4 种失衡

上面说到可能导致失衡的隐患,分别是右重和左重。你可能在很多地方看到 LL(左左)、RR(右右)、LR(左右)、RL(右左) ,搞得跟秘籍键似的这 TM 到底指的是啥?其实就是下面的 4 种失衡情况:

LL(左左):2 是 3 的 子树,2 重;

相对友好的 AVL Tree 教程

RR(右右):2 是 1 的 子树,2

相对友好的 AVL Tree 教程

LR(左右):1 是 3 的 子树,1

相对友好的 AVL Tree 教程

RL(右左):3 是 1 的 子树,3

相对友好的 AVL Tree 教程

树的旋转

“症状”有了,就需要对症下药了。正常的思路是,哪边高了就降低其高度,但是要注意二叉搜索树中的节点是有顺序的(左<中<右),如何降低高度也是有讲究的。这里就引入一个很重要的操作—— 旋转 ,旋转能满足只改变树的结构,又符合节点的排列顺序。你可能在很多地方看到,为了保证树的平衡,会有左旋或右旋的操作,这里的左旋、右旋具体指的又是啥?Wikipedia 上的介绍

相对友好的 AVL Tree 教程

当说到旋转时,是指对某个节点旋转(上图对 Q 右旋,对 P 左旋),仔细观察发现, 右旋使得 Q 的左孩子 P 取代了自己原来的位置,左旋使得 P 的右孩子 Q 取代了自己原来的位置 ,记住这一点很重要哈。

相对友好的 AVL Tree 教程

上面动图直观的感受就是 右旋后右子树高度升高,左子树高度降低;左旋后左子树升高,右子树高度降低; 除此之外,旋转的过程中也涉及到节点的交换

相对友好的 AVL Tree 教程

从上图可以看到,当简单地说右旋,其实展开来说是指:

  • 根节点 5 右旋,首先将左子树 3 的右孩子 4 作为此时根节点 5 的左孩子;
  • 再将 5 这棵树作为新根节点 3 的右子树;

左旋反之;因为这样很啰嗦,平时不会这么说,但这背后的原理得知道。此外旋转后节点还是符合大小排列顺序,这正是我们所希望的。

AVL 树

说了半天,这 AVL 树是个啥?这个有点“黄”的名字来源于它的发明者 G. M. A delson- V elsky 和 Evgenii L andis,名字不重要,功能才重要,它能在失衡的情况下通过旋转重新实现平衡,因此它的时间复杂度为 O(log n)。上面介绍了 4 种失衡的情况,现在分别介绍 AVL 树是如何做到重新平衡的:

LL(左左): 假设要在下面这棵树中插入 3

9
     / \
    7   10
   / \
  6   8
复制代码

首先要做的是先确定各个节点的平衡因子:

9(-1)
         /       \
       7(0)      10(0)
      / \
  6(0)   8(0)
复制代码

插入 3 后:

9(-1?)
          /      \
        7 (0?)   10(0)
       /   \
   6(-1)   8(0)
   /
 3(0)
复制代码

注意这里对可能影响到的路径后面加了个 ?,是因为此时他们的平衡因子还不确定,需要重新计算,由于 7 的左子树高度加 1 ,7 的平衡因子也变了:

9(-1?)
          /      \
        7(-1)    10(0)
       /   \
   6(-1)   8(0)
   /
 3(0)
复制代码

最后,相应的 9 的平衡因子也变了:

9(-2)
          /      \
        7(-1)    10(0)
       /   \
   6(-1)   8(0)
   /
 3(0)
复制代码

根据上面学的内容,这种左重的情况右旋后可以达到平衡,找到负载因子为 -2 的节点(9)右旋,剩下的就是上面已经介绍过的,节点交换什么的。如下:

相对友好的 AVL Tree 教程

RR(右右): 假设要在下面这棵树种插入 12

8
     / \
    7   10
        / \
       9   11
复制代码

先确定各个节点的平衡因子:

8 (+1)
         /       \
       7(0)      10(0)
                  / \
               9(0)  11(0)
复制代码

插入 12 后,直接跳到最后一步:

8(+2)
         /       \
       7(0)      10(+1)
                  / \
               9(0)  11(+1)
                       \
                       12(0)
复制代码

这种右重的情况左旋后可以达到平衡,找到负载因子为 +2 的节点(8)左旋:

相对友好的 AVL Tree 教程

LR(左右):假设要在下面这棵树中插入 9

10
     / 
    7   
复制代码

先确定各个节点的平衡因子:

10(-1)
         /       
       7(0)    
复制代码

插入 9 后,直接跳到最后一步:

10(-2)
         /      
       7(+1)    
        \         
        9(0)
复制代码

按照之前的套路,这种左重的情况需要右旋,找到负载因子为 -2 的节点(10)右旋,结果咋样呢?

7(+2)
           \     
           10(-1)    
           /    
         9(0)
复制代码

发现套路不好使了,这里就要用到两次旋转,第一次将旋转将 LR(左右)变成熟悉的 LL(左左),第二次旋转就可以用之前的套路了

10                              10                                9
         /                               /                                 /  \ 
       7          (将 7 左旋) --->       9          (将 10 右旋) --->       7   10 
        \                              /
        9                             7
复制代码

RL(右左):假设要在下面这棵树中插入 9

8
        \  
         10  
复制代码

先确定各个节点的平衡因子:

8(+1)
        \  
         10(0)  
复制代码

插入 9 后,直接跳到最后一步:

8(+2)
        \  
         10(-1)  
         /
        9(0)
复制代码

同样要用到两次旋转,第一次将旋转将RL(右左)变成熟悉的 RR(右右),第二次旋转就可以用之前的套路了

8                                8                                9
        \                               \                              /  \
         10       (将 10 右旋) --->        9       (将 8 左旋) --->     8    10
         /                                 \ 
        9                                   10
复制代码

Enjoy –☺


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

数字乌托邦

数字乌托邦

尼古拉斯•卡尔 / 姜忠伟 / 中信前沿出版社 / 2018-5 / 69.00

当下,技术与我们的关系变得越来越紧密不可分割,特别是智能手机等设备的出现,带给整个人类社会一场彻底的变革。的确,智能手机上的各种应用程序让我们的工作生活无比便利:社交媒体让我们能够和他人实时保持联络并传输信息,不再受时间、地点的限制;搜索引擎通过精准的算法将我们所需要的信息整合推送至屏幕上,让我们毫不费力就看到自己想要的;地图软件为我们的出行提供了更多路线选择,甚至可以使用语音导航,帮助我们顺利到......一起来看看 《数字乌托邦》 这本书的介绍吧!

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具