内容简介:[译] 一万元搭建深度学习系统:硬件、软件安装教程以及性能测试
作者:Slav Ivanov@blog.slavv.com
问耕 编译整理
量子位 出品 | 公众号 QbitAI
Macbook这种轻薄的笔记本,是搞不了深度学习的。亚马逊P2云服务,会给堆积越来越多的账单,换个便宜的服务,训练时间又太长……
没办法,已经十多年没用过台式机的我,只能重新着手DIY装机,搭建一套自己的深度学习系统。以下是我的系统搭建和测试过程。
硬件清单
之前,我在AWS亚马逊云服务上的花费是每月70美元(约480元人民币)。按照使用两年计算,我给这套系统的总预算是1700美元(约11650元)。
GPU
肯定得买Nvidia,没有其他选择。买两块还是一块?我想了想,还是先买一个性能更好的,以后有钱了再增加。综合显存、带宽等因素,我最终选了GTX 1080 Ti,跟Titan X相比,性能差不了多少,但价格便宜不少。
CPU
虽然比不上GPU,但CPU也很重要。从预算出发,我选了一颗中端产品英特尔i5 7500。相对便宜,但不会拖慢整个系统。
内存
两条16GB容量的内存,总共是32GB。
硬盘
两块。
一块SSD硬盘运行操作系统和当前数据,我选的是MyDigitalSSD NVMe 480GB。一块速度较慢的2TB容量HDD硬盘存储大的数据集(例如ImageNet)。
主板
为了以后的拓展,我得选能支持两块GTX 1080 Ti的主板。最后的选择是:华硕TUF Z270。
电源
得为GPU何GPU们提供足够的电力供应。英特尔i5 7500功耗是65W,一块1080Ti需要250W(以后还想加一块),所以最后选择了Deepcool 750W Gold PSU。
机箱
我听从朋友的建议,选了Thermaltake N23机箱。只是没有LED灯,伤心。
组装
组装过程按下不表,装机也是个手艺,最后效果如下图所示。
安装软件
提示:如果你想装Windows系统,最好先安装Windows,再装Linux。要不然Windows会搞乱启动分区。
安装Ubuntu
大部分深度学习框架都工作在 Linux 环境中,所以我选择安装Ubuntu。一个2GB容量的U盘就能搞定安装,如何制作?
-
OSX用户参考这里:
https://www.ubuntu.com/download/desktop/create-a-usb-stick-on-macos
-
Windows用户参考这里:
https://rufus.akeo.ie/
我写这个教程的时候,Ubuntu 17.04版本刚刚发布,但是我选择了之前的16.04版本,因为老版本的相关文档可能更全一点。另外,我选择的是Ubuntu桌面版本,不过关闭了图形界面X,电脑启动会进入终端模式。
如果需要图形界面,只需要输入: startx
及时更新
更新可以使用下面这个命令
深度学习堆栈
为了展开深度学习,我们需要如下软件来使用GPU:
-
GPU驱动:让操作系统和显卡可以对话
-
CUDA:能让GPU运行通用目的代码
-
CuDNN:CUDA之上的神经网络加速库
-
深度学习框架:TensorFlow等
安装GPU驱动
最新的驱动,可以参考官网
http://nvidia.com/Download/index.aspx
或者直接使用如下代码安装:
安装CUDA
可以从Nvidia下载CUDA,地址如下:
https://developer.nvidia.com/cuda-downloads
或者直接运行如下的代码:
安装好CUDA之后,下面的代码能把CUDA添加到PATH变量:
现在可以检验一下CUDA装好没有,运行如下代码即可:
删除CUDA或GPU驱动,可以参考如下代码:
安装CuDNN
我用的是CuDNN 5.1,因为最新的TensorFlow不支持CuDNN 6。下载CuDNN,你需要创建一个免费的开发者账号。下载之后,用如下命令安装。
Anaconda
Anaconda是一个很棒的 Python 软件包管理器,我现在使用了Python 3.6版本,所以对应的使用Anaconda 3版本,安装如下:
TensorFlow
最流行的深度学习框架,安装:
为了检查一下TensorFlow安装好没有,可以运行MNIST看看:
应该能在训练过程中,看到loss的逐渐减少:
Keras
一个高级神经网络框架,安装非常简单:
PyTorch
深度学习框架届的新兵,但也值得推荐,安装命令:
Jupyter notebook
Jupyter是一个交互式的笔记本,随着Anaconda安装,我们要配置和测试一下:
现在打开 http://localhost:8888 ,应该就能看到Jupyter的界面。
我们可以把Jupyter设置成自动启动,使用crontab来设置。运行 crontab -e ,然后把如下代码添加在最后。
测试
现在基本上准备妥当了,是时候测试一下了。参加此次对比的几个选手是:
-
AWS P2实例GPU(K80)
-
AWS P2虚拟CPU
-
英伟达GTX 1080 Ti
-
英特尔i5 7500
MNIST多层感知器
MNIST数据集由70000手写数字组成。我们在这个数据集上运行了一个使用多层感知器(MLP)的Keras案例,代码地址:
https://github.com/fchollet/keras/blob/master/examples/mnist_mlp.py
MLP的意思是只使用全连接的层,而不用卷积。这个模型在这个数据集上进行了20次训练,实现了超过98%的准确率。
可以看到在训练这个模型时,GTX 1080 Ti比AWS P2 K80快2.4倍,这有点惊人,因为两个显卡的性能应该差不多,我觉得可能是AWS上有降频或者受到虚拟化的影响。
CPU的表现比GPU慢9倍。有趣的是,i5 7500比亚马逊的虚拟CPU快2.3倍。
VGG微调
为Kaggle猫狗识别竞赛而微调一个VGG网络。使用相同的batch在CPU上运行这个模型不可行,所以我们在GPU上微调了390个batch,在CPU上是10个batch。代码如下:
https://github.com/slavivanov/cats_dogs_kaggle
这次1080 Ti比AWS P2 K80快5.5倍。CPU在这个环节的表现,最多慢了200倍。
Wasserstein GAN
生成对抗网络(GAN)用来训练模型产生图像。Wasserstein GAN是原始GAN的一个改进版。我这里用了一个PyTorch实现,代码地址:
https://github.com/martinarjovsky/WassersteinGAN
这个模型需要50步训练,CPU在这个训练中不予考虑。
GTX 1080 Ti比AWS P2 K80快5.5倍。
风格迁移
最后一个测试是在TensorFlow上的风格迁移实现,代码地址:
https://github.com/slavivanov/Style-Tranfer
GTX 1080 Ti比AWS P2 K80快4.3倍。CPU比GPU慢30-50倍。
好啦,关于万元打造一个深度学习系统的分享,就先到这里。
各位端午节快乐。
【完】
招聘
我们正在招募编辑记者、运营等岗位,工作地点在北京中关村,期待你的到来,一起体验人工智能的风起云涌。
相关细节,请在公众号对话界面,回复:“招聘”两个字。
One More Thing…
今天AI界还有哪些事值得关注?在量子位(QbitAI)公众号会话界面回复“今天”,看我们全网搜罗的AI行业和研究动态。笔芯~
另外,欢迎加量子位小助手的微信:qbitbot,如果你研究或者从事AI领域,小助手会把你带入量子位的交流群里。
△ 扫码强行关注『量子位』
追踪人工智能领域最劲内容
以上所述就是小编给大家介绍的《[译] 一万元搭建深度学习系统:硬件、软件安装教程以及性能测试》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 少花钱搭建深度学习系统的硬件指南
- Golang学习笔记之简易聊天系统服务器的搭建
- 混合学习环境下基于学习行为数据的学习预警系统设计与实现
- 美团深度学习系统的工程实践
- 无痛的机器学习系统入门指南(一)?
- 机器学习系统SyeML笔记三——自动微分
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
深入Linux内核架构
Wolfgang Mauerer / 郭旭 / 人民邮电出版社 / 201005 / 149.00元
众所周知,Linux操作系统的源代码复杂、文档少,对程序员的要求高,要想看懂这些代码并不是一件容易事。本书结合内核版本2.6.24源代码中最关键的部分,深入讨论Linux内核的概念、结构和实现。具体包括进程管理和调度、虚拟内存、进程间通信、设备驱动程序、虚拟文件系统、网络、时间管理、数据同步等方面的内容。本书引导你阅读内核源代码,熟悉Linux所有的内在工作机理,充分展现Linux系统的魅力。 ......一起来看看 《深入Linux内核架构》 这本书的介绍吧!