内容简介:引入sigmoid函数(用
1、逻辑回归与线性回归的区别?
线性回归
预测得到的是一个数值,而 逻辑回归
预测到的数值只有0、1两个值。 逻辑回归
是在线性回归的基础上,加上一个 sigmoid函数
,让其值位于 0-1
之间,最后获得的值大于 0.5
判断为 1
,小于等于 0.5
判断为 0
二、逻辑回归的推导
1、一般公式
y
为标签值,另一个 y hat
为预测值。
2、向量化
3、激活函数
引入sigmoid函数(用
表示),使值位于0-1
4、损失函数
损失函数用
表示
因 梯度下降
效果不好,换用 交叉熵损失函数
5、代价函数
代价函数用
表示
展开
6、正向传播
7、反向传播
求出
= 3,表示 对 的偏导数
求出
= 6
求出
= 6
对 Sigmod函数
求导
8、反向传播的意义
修正参数,使 代价函数值
减少, 预测值
接近 实际值
。
举个例子:
(1) 玩一个猜数游戏,目标数字为150。
(2) 输入训练样本值: 你第一次猜出一个数字为x = 10
(3) 设置初始权重: 设置一个权重值,比如权重w设为0.5
(4) 正向计算: 进行计算,获得值wx
(5) 求出代价函数: 出题人说差了多少(说的不是具体数字,而是用0-10表示,10表示差的离谱,1表示非常接近,0表示正确)
(6) 反向传播或求导: 你通过出题人的结论,去一点点修正权重(增加w或减少w)。
(7) 重复(4)操作,直到无限接近或等于目标数字。
机器学习,就是在训练中改进、优化,找到最有泛化能力的规则。
三、神经网络实现
1、实现激活函数Sigmoid
def sigmoid(z): s = 1.0 / (1.0 + np.exp(-z)) return s
2、参数初始化
def initialize_with_zeros(dim): w = np.zeros([dim,1]) b = 0 return w, b
3、前后向传播
def propagate(w, b, X, Y): m = X.shape[1] A = sigmoid(np.dot(w.T,X) + b) cost = (- 1.0 / m ) * np.sum(Y*np.log(A) + (1-Y)*np.log(1-A)) dw = (1.0 / m) * np.dot(X,(A - Y).T) db = (1.0 / m) * np.sum(A - Y) cost = np.squeeze(cost) grads = {"dw": dw,"db": db} return grads, cost
4、优化器实现
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False): costs = [] for i in range(num_iterations): # Cost and gradient calculation grads, cost = propagate(w,b,X,Y) # Retrieve derivatives from grads dw = grads["dw"] db = grads["db"] # update rule w = w - learning_rate * dw b = b - learning_rate * db # Record the costs if i % 100 == 0: costs.append(cost) # Print the cost every 100 training iterations if print_cost and i % 100 == 0: print ("Cost after iteration %i: %f" %(i, cost)) params = {"w": w, "b": b} grads = {"dw": dw, "db": db} return params, grads, costs
5、预测函数
def predict(w, b, X): m = X.shape[1] Y_prediction = np.zeros((1,m)) w = w.reshape(X.shape[0], 1) # Compute vector "A" predicting the probabilities of a cat being present in the picture A = sigmoid(np.dot(w.T,X)+b) for i in range(A.shape[1]): # Convert probabilities A[0,i] to actual predictions p[0,i] if A[0][i] <= 0.5: Y_prediction[0][i] = 0 else: Y_prediction[0][i] = 1 return Y_prediction
6、代码模块整合
def model(X_train, Y_train, X_test, Y_test, num_iterations =2000, learning_rate =0.5, print_cost = False): # initialize parameters with zeros (≈ 1 line of code) w, b = initialize_with_zeros(train_set_x.shape[0]) # Gradient descent (≈ 1 line of code) parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost) # Retrieve parameters w and b from dictionary "parameters" w = parameters["w"] b = parameters["b"] Y_prediction_test = predict(w, b, X_test) Y_prediction_train = predict(w, b, X_train) # Print train/test Errors print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100)) print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100)) d = {"costs": costs, "Y_prediction_test": Y_prediction_test, "Y_prediction_train" : Y_prediction_train, "w" : w, "b" : b, "learning_rate" : learning_rate, "num_iterations": num_iterations} return d
7、运行程序
d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True)
结果
Cost after iteration 0: 0.693147 Cost after iteration 100: 0.584508 Cost after iteration 200: 0.466949 Cost after iteration 300: 0.376007 Cost after iteration 400: 0.331463 Cost after iteration 500: 0.303273 Cost after iteration 600: 0.279880 Cost after iteration 700: 0.260042 Cost after iteration 800: 0.242941 Cost after iteration 900: 0.228004 Cost after iteration 1000: 0.214820 Cost after iteration 1100: 0.203078 Cost after iteration 1200: 0.192544 Cost after iteration 1300: 0.183033 Cost after iteration 1400: 0.174399 Cost after iteration 1500: 0.166521 Cost after iteration 1600: 0.159305 Cost after iteration 1700: 0.152667 Cost after iteration 1800: 0.146542 Cost after iteration 1900: 0.140872 train accuracy: 99.04306220095694 % test accuracy: 70.0 %
8、更多的分析
learning_rates = [0.01, 0.001, 0.0001] models = {} for i in learning_rates: print ("learning rate is: " + str(i)) models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False) print ('\n' + "-------------------------------------------------------" + '\n') for i in learning_rates: plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"])) plt.ylabel('cost') plt.xlabel('iterations (hundreds)') legend = plt.legend(loc='upper center', shadow=True) frame = legend.get_frame() frame.set_facecolor('0.90') plt.show()
9、测试图片
## START CODE HERE ## (PUT YOUR IMAGE NAME) my_image = "my_image.jpg" # change this to the name of your image file ## END CODE HERE ## # We preprocess the image to fit your algorithm. fname = "images/" + my_image image = np.array(ndimage.imread(fname, flatten=False)) my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((1, num_px*num_px*3)).T my_predicted_image = predict(d["w"], d["b"], my_image) plt.imshow(image) print("y = " + str(np.squeeze(my_predicted_image)) + ", your algorithm predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" picture.")
结果
y = 0.0, your algorithm predicts a "non-cat" picture.
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- centos创建逻辑卷和扩容逻辑卷
- AI「王道」逻辑编程的复兴?清华提出神经逻辑机,已入选ICLR
- 内聚代码提高逻辑可读性,用MCVP接续你的大逻辑
- 逻辑式编程语言极简实现(使用C#) - 1. 逻辑式编程语言介绍
- 什么是逻辑数据字典?
- 逻辑回归——详细概述
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
编程的修炼(中英双语)
[荷]Edsger W. Dijkstra / 裘宗燕 / 电子工业出版社 / 2013-7 / 79.00元
本书是图灵奖获得者Edsger W. Dijkstra在编程领域里的经典著作中的经典。作者基于其敏锐的洞察力和长期的实际编程经验,对基本顺序程序的描述和开发中的许多关键问题做了独到的总结和开发。书中讨论了顺序程序的本质特征、程序描述和对程序行为(正确性)的推理,并通过一系列从简单到复杂的程序的思考和开发范例,阐释了基于严格的逻辑推理开发正确可靠程序的过程。 本书写于20世纪70年代中后期,但......一起来看看 《编程的修炼(中英双语)》 这本书的介绍吧!