for-loop 与 json.Unmarshal 性能分析概要

栏目: 后端 · 前端 · 发布时间: 5年前

内容简介:原文地址:在项目中,常常会遇到循环交换赋值的数据处理场景,尤其是 RPC,数据交互格式要转为 Protobuf,赋值是无法避免的。一般会有如下几种做法:这时候又面临 “选择困难症”,用哪个好?又想代码量少,又担心性能有没有影响啊...

原文地址: for-loop 与 json.Unmarshal 性能分析概要

前言

在项目中,常常会遇到循环交换赋值的数据处理场景,尤其是 RPC,数据交互格式要转为 Protobuf,赋值是无法避免的。一般会有如下几种做法:

  • for
  • for range
  • json.Marshal/Unmarshal

这时候又面临 “选择困难症”,用哪个好?又想代码量少,又担心性能有没有影响啊...

为了弄清楚这个疑惑,接下来将分别编写三种使用场景。来简单看看它们的性能情况,看看谁更 “好”

功能代码

...
type Person struct {
    Name   string `json:"name"`
    Age    int    `json:"age"`
    Avatar string `json:"avatar"`
    Type   string `json:"type"`
}

type AgainPerson struct {
    Name   string `json:"name"`
    Age    int    `json:"age"`
    Avatar string `json:"avatar"`
    Type   string `json:"type"`
}

const MAX = 10000

func InitPerson() []Person {
    var persons []Person
    for i := 0; i < MAX; i++ {
        persons = append(persons, Person{
            Name:   "EDDYCJY",
            Age:    i,
            Avatar: "https://github.com/EDDYCJY",
            Type:   "Person",
        })
    }

    return persons
}

func ForStruct(p []Person, count int) {
    for i := 0; i < count; i++ {
        _, _ = i, p[i]
    }
}

func ForRangeStruct(p []Person) {
    for i, v := range p {
        _, _ = i, v
    }
}

func JsonToStruct(data []byte, againPerson []AgainPerson) ([]AgainPerson, error) {
    err := json.Unmarshal(data, &againPerson)
    return againPerson, err
}

func JsonIteratorToStruct(data []byte, againPerson []AgainPerson) ([]AgainPerson, error) {
    var jsonIter = jsoniter.ConfigCompatibleWithStandardLibrary
    err := jsonIter.Unmarshal(data, &againPerson)
    return againPerson, err
}

测试代码

...
func BenchmarkForStruct(b *testing.B) {
    person := InitPerson()
    count := len(person)
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        ForStruct(person, count)
    }
}

func BenchmarkForRangeStruct(b *testing.B) {
    person := InitPerson()

    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        ForRangeStruct(person)
    }
}

func BenchmarkJsonToStruct(b *testing.B) {
    var (
        person = InitPerson()
        againPersons []AgainPerson
    )
    data, err := json.Marshal(person)
    if err != nil {
        b.Fatalf("json.Marshal err: %v", err)
    }

    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        JsonToStruct(data, againPersons)
    }
}

func BenchmarkJsonIteratorToStruct(b *testing.B) {
    var (
        person = InitPerson()
        againPersons []AgainPerson
    )
    data, err := json.Marshal(person)
    if err != nil {
        b.Fatalf("json.Marshal err: %v", err)
    }

    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        JsonIteratorToStruct(data, againPersons)
    }
}

测试结果

BenchmarkForStruct-4                    500000          3289 ns/op           0 B/op           0 allocs/op
BenchmarkForRangeStruct-4               200000          9178 ns/op           0 B/op           0 allocs/op
BenchmarkJsonToStruct-4                    100      19173117 ns/op     2618509 B/op       40036 allocs/op
BenchmarkJsonIteratorToStruct-4            300       4116491 ns/op     3694017 B/op       30047 allocs/op

从测试结果来看,性能排名为:for < for range < json-iterator < encoding/json。接下来我们看看是什么原因导致了这样子的排名?

性能对比

for-loop 与 json.Unmarshal 性能分析概要

for-loop

在测试结果中, for range 在性能上相较 for 差。这是为什么呢?在这里我们可以参见 for range实现 ,伪实现如下:

for_temp := range
len_temp := len(for_temp)
for index_temp = 0; index_temp < len_temp; index_temp++ {
    value_temp = for_temp[index_temp]
    index = index_temp
    value = value_temp
    original body
}

通过分析伪实现,可得知 for range 相较 for 多做了如下事项

Expression

RangeClause = [ ExpressionList "=" | IdentifierList ":=" ] "range" Expression .

在循环开始之前会对范围表达式进行求值,多做了 “解” 表达式的动作,得到了最终的范围值

Copy

...
value_temp = for_temp[index_temp]
index = index_temp
value = value_temp
...

从伪实现上可以得出, for range 始终使用 值拷贝 的方式来生成循环变量。通俗来讲,就是在每次循环时,都会对循环变量重新分配

小结

通过上述的分析,可得知其比 for 慢的原因是 for range 有额外的性能开销,主要为 值拷贝的动作 导致的性能下降。这是它慢的原因

那么其实在 for range 中,我们可以使用 _T[i] 也能达到和 for 差不多的性能。但这可能不是 for range 的设计本意了

json.Marshal/Unmarshal

encoding/json

json 互转是在三种方案中最慢的,这是为什么呢?

众所皆知,官方的 encoding/json 标准库,是通过大量反射来实现的。那么 “慢”,也是必然的。可参见下述代码:

...
func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc {
    ...
    switch t.Kind() {
    case reflect.Bool:
        return boolEncoder
    case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
        return intEncoder
    case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
        return uintEncoder
    case reflect.Float32:
        return float32Encoder
    case reflect.Float64:
        return float64Encoder
    case reflect.String:
        return stringEncoder
    case reflect.Interface:
        return interfaceEncoder
    case reflect.Struct:
        return newStructEncoder(t)
    case reflect.Map:
        return newMapEncoder(t)
    case reflect.Slice:
        return newSliceEncoder(t)
    case reflect.Array:
        return newArrayEncoder(t)
    case reflect.Ptr:
        return newPtrEncoder(t)
    default:
        return unsupportedTypeEncoder
    }
}

既然官方的标准库存在一定的 “问题”,那么有没有其他解决方法呢?目前在社区里,大多为两类方案。如下:

  • 预编译生成代码(提前确定类型),可以解决运行时的反射带来的性能开销。缺点是增加了预生成的步骤
  • 优化序列化的逻辑,性能达到最大化

接下来的实验,我们用第二种方案的库来测试,看看有没有改变。另外也推荐大家了解如下项目:

json-iterator/go

目前社区较常用的是 json-iterator/go,我们在测试代码中用到了它

它的用法与标准库 100% 兼容,并且性能有较大提升。我们一起粗略的看下是怎么做到的,如下:

reflect2

利用 modern-go/reflect2 减少运行时调度开销

...
type StructDescriptor struct {
    Type   reflect2.Type
    Fields []*Binding
}

...
type Binding struct {
    levels    []int
    Field     reflect2.StructField
    FromNames []string
    ToNames   []string
    Encoder   ValEncoder
    Decoder   ValDecoder
}

type Extension interface {
    UpdateStructDescriptor(structDescriptor *StructDescriptor)
    CreateMapKeyDecoder(typ reflect2.Type) ValDecoder
    CreateMapKeyEncoder(typ reflect2.Type) ValEncoder
    CreateDecoder(typ reflect2.Type) ValDecoder
    CreateEncoder(typ reflect2.Type) ValEncoder
    DecorateDecoder(typ reflect2.Type, decoder ValDecoder) ValDecoder
    DecorateEncoder(typ reflect2.Type, encoder ValEncoder) ValEncoder
}

struct Encoder/Decoder Cache

类型为 struct 时,只需要反射一次 Name 和 Type,会缓存 struct Encoder 和 Decoder

var typeDecoders = map[string]ValDecoder{}
var fieldDecoders = map[string]ValDecoder{}
var typeEncoders = map[string]ValEncoder{}
var fieldEncoders = map[string]ValEncoder{}
var extensions = []Extension{}

....

fieldNames := calcFieldNames(field.Name(), tagParts[0], tag)
fieldCacheKey := fmt.Sprintf("%s/%s", typ.String(), field.Name())
decoder := fieldDecoders[fieldCacheKey]
if decoder == nil {
    decoder = decoderOfType(ctx.append(field.Name()), field.Type())
}
encoder := fieldEncoders[fieldCacheKey]
if encoder == nil {
    encoder = encoderOfType(ctx.append(field.Name()), field.Type())
}

文本解析优化

小结

相较于官方标准库,第三方库 json-iterator/go 在运行时上做的更好。这是它快的原因

有个需要注意的点,在 Go 1.10 后 map 类型与标准库的已经没有太大的性能差异。但是,例如 struct 类型等仍然有较大的性能提高

总结

在本文中,我们首先进行了性能测试,再分析了不同方案,得知为什么了快慢的原因。那么最终在选择方案时,可以根据不同的应用场景去抉择:

  • 对性能开销有较高要求:选用 for ,开销最小
  • 中规中矩:选用 for range ,大对象慎用
  • 量小、占用小、数量可控:选用 json.Marshal/Unmarshal 的方案也可以。其 重复代码 少,但开销最大

在绝大多数场景中,使用哪种并没有太大的影响。但作为工程师你应当清楚其利弊。以上就是不同的方案 分析概要 ,希望对你有所帮助 :)


以上所述就是小编给大家介绍的《for-loop 与 json.Unmarshal 性能分析概要》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Web开发敏捷之道

Web开发敏捷之道

Sam Ruby、Dave Thomas、David Heineme Hansson / 慕尼黑Isar工作组、骆古道 / 机械工业出版社 / 2012-3-15 / 59.00元

本书第1版曾荣获Jolt大奖“最佳技术图书”奖。在前3版的内容架构基础上,第4版增加了关于Rails中新特性和最佳实践的内容。本书从逐步创建一个真正的应用程序开始,然后介绍Rails的内置功能。全书分为3部分,第一部分介绍Rails的安装、应用程序验证、Rails框架的体系结构,以及Ruby语言的知识;第二部分用迭代方式创建应用程序,然后依据敏捷开发模式搭建测试案例,最终用Capistrano完成......一起来看看 《Web开发敏捷之道》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码