leetcode398. Random Pick Index

栏目: 编程工具 · 发布时间: 5年前

内容简介:设计一个数据结构,使得从该数据结构中查询一个数字时,能够以等概率返回该数字所在的任何下标。额外的要求是只要占用O(1)的额外的空间复杂度。其实要是想在O(1)的时间内完成随机数的获取,只需要缓存每个数字出现的下标,但是这意味着需要先对数据进行遍历,并且还需要O(n)的空间来额外存储数字下标的集合。这违背了题目意思。所以我们只能每次在获取数字的时候来统计数字出现的次数,然后针对次数获取随机数下标。代码如下:

题目要求

Given an array of integers with possible duplicates, randomly output the index of a given target number. You can assume that the given target number must exist in the array.

Note:
The array size can be very large. Solution that uses too much extra space will not pass the judge.

Example:

int[] nums = new int[] {1,2,3,3,3};
Solution solution = new Solution(nums);

// pick(3) should return either index 2, 3, or 4 randomly. Each index should have equal probability of returning.
solution.pick(3);

// pick(1) should return 0. Since in the array only nums[0] is equal to 1.
solution.pick(1);

设计一个数据结构,使得从该数据结构中查询一个数字时,能够以等概率返回该数字所在的任何下标。额外的要求是只要占用O(1)的额外的空间复杂度。

思路一:O(2n)的实现

其实要是想在O(1)的时间内完成随机数的获取,只需要缓存每个数字出现的下标,但是这意味着需要先对数据进行遍历,并且还需要O(n)的空间来额外存储数字下标的集合。这违背了题目意思。所以我们只能每次在获取数字的时候来统计数字出现的次数,然后针对次数获取随机数下标。

代码如下:

private int[] nums;
    private Random r;
    public Solution(int[] nums) {
        this.nums = nums;
        this.r = new Random();
    }
    
    public int pick(int target) {
        int count = 0;
        int result = -1;
        for(int i = 0 ; i<nums.length ; i++) {
            if(target == nums[i]) {
                count++;
            }
        }
        int index = r.nextInt(count);
        for(int i = 0 ; i<nums.length ; i++) {
            if(target == nums[i]) {
                index--;
                
                if(index == -1){
                    result = i;
                    break;
                }
            }
        }
        return result;
    }

思路二:蓄水池问题

有没有可能在一次的遍历中,找到这个随机下标呢?这就涉及到一个概率问题,即当我在遍历过程中遇到这个数字时,我是否需要选择它作为我的结果值。

首先介绍一下 蓄水池抽样算法 。蓄水池抽样算法主要对应的是这样的一个问题,假设有一个非常大的数据集,或者是一个以流的形式作为输入的数据集,希望从中选择K个样本,此时我们可能无法把所有的样本都放在内存中,因此只能保存一个大小为K的集合,每次遇到一个数据时,决定是否将其放入样本中。

因此,假设当前遇到的数据总共有N个,如果N小于K,则每个数据被选中的概率为1,如果N>K,则每个数据被选中的概率为K/N,旧样本中数据被保留的概率为 1 - K(N-K)/N 即K/N,因此每一个旧的数据被替换掉的概率为1/N。

按照这个思路,我们在下面的遍历时,每遇到一个新元素,就判断当前选中的元素是否会被该元素替换掉即可。

private int[] nums;
    private Random r;
    public Solution(int[] nums) {
        this.nums = nums;
        this.r = new Random();
    }
    
    public int pick(int target) {
        int count = 0;
        int result = -1;
        for(int i = 0 ; i<nums.length ; i++) {
            if(nums[i] == target) {
                int index = r.nextInt(++count);
                if(index == 0) {
                    result = i; 
                }
            }
        }
        return result;
    }

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

程序设计语言

程序设计语言

斯科特 / 裘宗燕 / 电子工业出版社 / 2005-1 / 88.00元

这是一本很有特色的教材,其核心是讨论程序设计语言的工作原理和技术。本书融合了传统的程序设计语言教科书和编译教科书的有关知识,并增加了一些有关汇编层体系结构的材料,以满足没学过计算机组织的学生们的需要。书中通过各种语言的例子,阐释了程序设计语言的重要基础概念,讨论了各种概念之间的关系,解释了语言中许多结构的形成和发展过程,以及它们演化为今天这种形式的根源。书中还详细讨论了编译器的工作方式和工作过程,......一起来看看 《程序设计语言》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试