129. Sum Root to Leaf Numbers

栏目: 数据库 · 发布时间: 6年前

内容简介:Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number.An example is the root-to-leaf path 1->2->3 which represents the number 123.Find the total sum of all root-to-leaf numbers.

Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number.

An example is the root-to-leaf path 1->2->3 which represents the number 123.

Find the total sum of all root-to-leaf numbers.

Note: A leaf is a node with no children.

Example:

Input: [1,2,3]
    1
   / \
  2   3
Output: 25
Explanation:
The root-to-leaf path 1->2 represents the number 12.
The root-to-leaf path 1->3 represents the number 13.
Therefore, sum = 12 + 13 = 25.

Example 2:

Input: [4,9,0,5,1]
    4
   / \
  9   0
 / \
5   1
Output: 1026
Explanation:
The root-to-leaf path 4->9->5 represents the number 495.
The root-to-leaf path 4->9->1 represents the number 491.
The root-to-leaf path 4->0 represents the number 40.
Therefore, sum = 495 + 491 + 40 = 1026.

难度:medium

题目:给定结点值只包含0-9的二叉树,每条从根到叶子的路径表示一个整数。找出所有这样的数并返回其和。

注意:叶结点即没有左右子结点

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public int sumNumbers(TreeNode root) {
        return sumNumbers(root, "");
    }
    
    private int sumNumbers(TreeNode root, String s) {
        if (null == root) {
            return 0;
        }
        s += root.val;
        if (null == root.left && null == root.right) {
            return Integer.parseInt(s);
        }
        
        return sumNumbers(root.left, s) + sumNumbers(root.right, s);
    }
}

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

数学之美 (第二版)

数学之美 (第二版)

吴军 / 人民邮电出版社 / 2014-11 / 49.00元

几年前,“数学之美”系列文章原刊载于谷歌黑板报,获得上百万次点击,得到读者高度评价。读者说,读了“数学之美”,才发现大学时学的数学知识,比如马尔可夫链、矩阵计算,甚至余弦函数原来都如此亲切,并且栩栩如生,才发现自然语言和信息处理这么有趣。 在纸本书的创作中,作者吴军博士几乎把所有文章都重写了一遍,为的是把高深的数学原理讲得更加通俗易懂,让非专业读者也能领略数学的魅力。读者通过具体的例子学到的......一起来看看 《数学之美 (第二版)》 这本书的介绍吧!

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

URL 编码/解码
URL 编码/解码

URL 编码/解码

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具