内容简介:识别验证码的方式很多,如tesseract、SVM等。前面的几篇文章介绍了KNN算法,今天主要学习的是如何使用KNN进行验证码的识别。本次实验采用的是CSDN的验证码做演练,相关的接口:https://download.csdn.net/index.php/rest/tools/validcode/source_ip_validate/10.5711163911089325目前接口返回的验证码共2种:
识别验证码的方式很多,如tesseract、SVM等。前面的几篇文章介绍了KNN算法,今天主要学习的是如何使用KNN进行验证码的识别。
数据准备
本次实验采用的是CSDN的验证码做演练,相关的接口:https://download.csdn.net/index.php/rest/tools/validcode/source_ip_validate/10.5711163911089325
目前接口返回的验证码共2种:
- 纯数字、干扰小的验证码,简单进行图片去除背景、二值化和阈值处理后,使用kNN算法即可识别。
- 字母加数字、背景有干扰、图形字符位置有轻微变形,进行图片去除背景、二值化和阈值处理后,使用kNN算法识别
这里选择第二种进行破解。由于两种验证码的图片大小不一样,所以可以使用图片大小来判断哪个是第一种验证码,哪个是第二种验证码。
下载验证码
import requests import uuid from PIL import Image import os url = "http://download.csdn.net/index.php/rest/tools/validcode/source_ip_validate/10.5711163911089325" for i in range(1000): resp = requests.get(url) filename = "./captchas/" + str(uuid.uuid4()) + ".png" with open(filename, 'wb') as f: for chunk in resp.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks f.write(chunk) f.flush() f.close() im = Image.open(filename) if im.size != (70, 25): im.close() os.remove(filename) else: print(filename)
分割字符
下载过后,就需要对字母进行分割。分割字符还是一件比较麻烦的工作。
灰度化
将彩色的图片转化为灰度图片,便于后面的二值化处理,示例代码:
from PIL import Image file = ".\\captchas\\0a4a22cd-f16b-4ae4-bc52-cdf4c081301d.png" im = Image.open(file) im_gray = im.convert('L') im_gray.show()
处理前:
处理后:
二值化
灰度化以后,有颜色的像素点为0-255之间的值。二值化就是将大于某个值的像素点都修改为255,小于该值的修改为0,示例代码:
from PIL import Image import numpy as np file = ".\\captchas\\0a4a22cd-f16b-4ae4-bc52-cdf4c081301d.png" im = Image.open(file) im_gray = im.convert('L') # im_gray.show() pix = np.array(im_gray) print(pix.shape) print(pix) threshold = 100 #阈值 pix = (pix > threshold) * 255 print(pix) out = Image.fromarray(pix) out.show()
二值化输出的结果:
去除边框
从二值化输出的结果可以看到除了字符,还存在边框,在切割字符前还需要先将边框去除。
border_width = 1 new_pix = pix[border_width:-border_width,border_width:-border_width]
字符切割
由于字符与字符间没有存在连接,可以使用比较简单的“投影法”进行字符的切割。原理就是将二值化后的图片先在垂直方向进行投影,根据投影后的极值来判断分割边界。分割后的小图片再在水平方向进行投影。
代码实现:
def vertical_image(image): height, width = image.shape h = [0] * width for x in range(width): for y in range(height): s = image[y, x] if s == 255: h[x] += 1 new_image = np.zeros(image.shape, np.uint8) for x in range(width): cv2.line(new_image, (x, 0), (x, h[x]), 255, 1) cv2.imshow('vert_image', new_image) cv2.waitKey() cv2.destroyAllWindows()
整体代码
from PIL import Image import cv2 import numpy as np import os import uuid def clean_bg(filename): im = Image.open(filename) im_gray = im.convert('L') image = np.array(im_gray) threshold = 100 # 阈值 pix = (image > threshold) * 255 border_width = 1 new_image = pix[border_width:-border_width, border_width:-border_width] return new_image def get_col_rect(image): height, width = image.shape h = [0] * width for x in range(width): for y in range(height): s = image[y, x] if s == 0: h[x] += 1 col_rect = [] in_line = False start_line = 0 blank_distance = 1 for i in range(len(h)): if not in_line and h[i] >= blank_distance: in_line = True start_line = i elif in_line and h[i] < blank_distance: rect = (start_line, i) col_rect.append(rect) in_line = False start_line = 0 return col_rect def get_row_rect(image): height, width = image.shape h = [0] * height for y in range(height): for x in range(width): s = image[y, x] if s == 0: h[y] += 1 in_line = False start_line = 0 blank_distance = 1 row_rect = (0, 0) for i in range(len(h)): if not in_line and h[i] >= blank_distance: in_line = True start_line = i elif in_line and i == len(h)-1: row_rect = (start_line, i) elif in_line and h[i] < blank_distance: row_rect = (start_line, i) break return row_rect def get_block_image(image, col_rect): col_image = image[0:image.shape[0], col_rect[0]:col_rect[1]] row_rect = get_row_rect(col_image) if row_rect[1] != 0: block_image = image[row_rect[0]:row_rect[1], col_rect[0]:col_rect[1]] else: block_image = None return block_image def clean_bg(filename): im = Image.open(filename) im_gray = im.convert('L') image = np.array(im_gray) threshold = 100 # 阈值 pix = (image > threshold) * 255 border_width = 2 new_image = pix[border_width:-border_width, border_width:-border_width] return new_image def split(filename): image = clean_bg(filename) col_rect = get_col_rect(image) for cols in col_rect: block_image = get_block_image(image, cols) if block_image is not None: new_image_filename = 'letters/' + str(uuid.uuid4()) + '.png' cv2.imwrite(new_image_filename, block_image) if __name__ == '__main__': for filename in os.listdir('captchas'): current_file = 'captchas/' + filename split(current_file) print('split file:%s' % current_file)
数据集准备
在完成图像切割后,需要做将切分的字母建立由标签的样本。即将切分后的字符梳理到正确的分类中。比较常见的方式是人工梳理。
由于图像比较多,这里使用使用Tesseract-OCR进行识别。
官方项目地址: https://github.com/tesseract-ocr/tesseract
Windows安装包地址: https://github.com/UB-Mannheim/tesseract/wiki
Tesseract-OCR的安装
下载完安装包后,直接运行安装即可,比较重要的是环境变量的设置。
- 将安装目录(D:\Program Files (x86)\Tesseract-OCR)添加进PATH
- 新建TESSDATA_PREFIX系统变量,值为tessdata 文件夹的路径(D:\Program Files (x86)\Tesseract-OCR\tessdata)
- 安装 Python 包pytesseract(pip install pytesseract)
Tesseract-OCR的使用
使用起来非常的简单,代码如下:
from PIL import Image import pytesseract import os def copy_to_dir(filename): image = Image.open(filename) code = pytesseract.image_to_string(image, config="-c tessedit" "_char_whitelist=ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789" " --psm 10" " -l osd" " ") if not os.path.exists("dataset/" + code): os.mkdir("dataset/" + code) image.save("dataset/" + code + filename.replace("letters", "")) image.close() if __name__ == "__main__": for filename in os.listdir('letters'): current_file = 'letters/' + filename copy_to_dir(current_file) print(current_file)
由于Tesseract-OCR识别的准确率非常的低,完全不能使用,放弃~,还是需要手工整理。
图片尺寸统一
在完成人工处理后,发现切割后的图片大小不一。在字符识别前需要对图片进行的尺寸进行统一。
具体实现方法:
import cv2 def image_resize(filename): img = cv2.imread(filename, cv2.IMREAD_GRAYSCALE) #读取图片时采用单通道 print(img) if img.shape[0] != 10 or img.shape[1] != 6: img = cv2.resize(img, (6, 10), interpolation=cv2.INTER_CUBIC) print(img) cv2.imwrite(filename, img)
使用cv2.resize时,参数输入是 宽×高×通道,这里使用的时单通道的,interpolation的选项有:
- INTER_NEAREST 最近邻插值
- INTER_LINEAR 双线性插值(默认设置)
- INTER_AREA 使用像素区域关系进行重采样。 它可能是图像抽取的首选方法,因为它会产生无云纹理的结果。 但是当图像缩放时,它类似于INTER_NEAREST方法。
- INTER_CUBIC 4×4像素邻域的双三次插值
- INTER_LANCZOS4 8×8像素邻域的Lanczos插值
另外为了让数据更加便于利用,可以将图片再进行二值化的归一。具体代码如下:
import cv2 import numpy as np def image_normalize(filename): img = cv2.imread(filename, cv2.IMREAD_GRAYSCALE) #读取图片时采用单通道 if img.shape[0] != 10 or img.shape[1] != 6: img = cv2.resize(img, (6, 10), interpolation=cv2.INTER_CUBIC) normalized_img = np.zeros((6, 10)) # 归一化 normalized_img = cv2.normalize(img, normalized_img, 0, 1, cv2.NORM_MINMAX) cv2.imwrite(filename, normalized_img)
归一化的类型,可以有以下的取值:
- NORM_MINMAX:数组的数值被平移或缩放到一个指定的范围,线性归一化,一般较常用。
- NORM_INF:此类型的定义没有查到,根据OpenCV 1的对应项,可能是归一化数组的C-范数(绝对值的最大值)
- NORM_L1 : 归一化数组的L1-范数(绝对值的和)
- NORM_L2: 归一化数组的(欧几里德)L2-范数
字符识别
字符图片 宽6个像素,高10个像素 ,理论上可以最简单粗暴地可以定义出60个特征:60个像素点上面的像素值。但是显然这样高维度必然会造成过大的计算量,可以适当的降维。比如:
- 每行上黑色像素的个数,可以得到10个特征
- 每列上黑色像素的个数,可以得到6个特征
from sklearn.neighbors import KNeighborsClassifier import os from sklearn import preprocessing import cv2 import numpy as np import warnings warnings.filterwarnings(module='sklearn*', action='ignore', category=DeprecationWarning) def get_feature(file_name): img = cv2.imread(file_name, cv2.IMREAD_GRAYSCALE) # 读取图片时采用单通道 height, width = img.shape pixel_cnt_list = [] for y in range(height): pix_cnt_x = 0 for x in range(width): if img[y, x] == 0: # 黑色点 pix_cnt_x += 1 pixel_cnt_list.append(pix_cnt_x) for x in range(width): pix_cnt_y = 0 for y in range(height): if img[y, x] == 0: # 黑色点 pix_cnt_y += 1 pixel_cnt_list.append(pix_cnt_y) return pixel_cnt_list if __name__ == "__main__": test = get_feature("dataset/K/04a0844c-12f2-4344-9b78-ac1d28d746c0.png") category = [] features = [] for dir_name in os.listdir('dataset'): for filename in os.listdir('dataset/' + dir_name): category.append(dir_name) current_file = 'dataset/' + dir_name + '/' + filename feature = get_feature(current_file) features.append(feature) # print(current_file) le = preprocessing.LabelEncoder() label = le.fit_transform(category) model = KNeighborsClassifier(n_neighbors=1) model.fit(features, label) predicted= model.predict(np.array(test).reshape(1, -1)) print(predicted) print(le.inverse_transform(predicted))
这里直接使用了sklearn中的KNN方法,如需了解更多见: 使用 Scikit-learn 进行 KNN 分类
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 算法基础:五大排序算法Python实战教程
- iOS数据结构与算法实战 二叉树的算法实战 Binary Tree Paths
- 【白话机器学习】算法理论+实战之K近邻算法
- IDAPython实战项目——DES算法识别
- Golang算法实战之斗地主<一>
- PHP和Python实战bcrypt算法
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。