能量视角下的GAN模型(二):GAN=“分析”+“采样”

栏目: 数据库 · 发布时间: 5年前

内容简介:在这个系列中,我们尝试从能量的视角理解GAN。我们会发现这个视角如此美妙和直观,甚至让人拍案叫绝。上一篇文章里,我们给出了一个直白而用力的能量图景,这个图景可以让我们轻松理解GAN的很多内容,换句话说,通俗的解释已经能让我们完成大部分的理解了,并且把最终的结论都已经写了出来。在这篇文章中,我们继续从能量的视角理解GAN,这一次,我们争取把前面简单直白的描述,用相对严密的数学语言推导一遍。跟第一篇文章一样,对于笔者来说,这个推导过程依然直接受启发于Benjio团队的新作

在这个系列中,我们尝试从能量的视角理解GAN。我们会发现这个视角如此美妙和直观,甚至让人拍案叫绝。

上一篇文章里,我们给出了一个直白而用力的能量图景,这个图景可以让我们轻松理解GAN的很多内容,换句话说,通俗的解释已经能让我们完成大部分的理解了,并且把最终的结论都已经写了出来。在这篇文章中,我们继续从能量的视角理解GAN,这一次,我们争取把前面简单直白的描述,用相对严密的数学语言推导一遍。

跟第一篇文章一样,对于笔者来说,这个推导过程依然直接受启发于Benjio团队的新作 《Maximum Entropy Generators for Energy-Based Models》

原作者的开源实现: https://github.com/ritheshkumar95/energy_based_generative_models

本文的大致内容如下:

1、推导了能量分布下的正负相对抗的更新公式;
2、比较了理论分析与实验采样的区别,而将两者结合便得到了GAN框架;
3、导出了生成器的补充loss,理论上可以防止mode collapse;
4、简单提及了基于能量函数的MCMC采样。

在这部分中,我们先来简单引入能量模型,并且推导了能量模型理论上的更新公式,指出它具有正相、负相对抗的特点。

首先,我们有一批数据$x_1,x_2,\dots,x_n\sim p(x)$,我们希望用一个概率模型去拟合它,我们选取的模型为

\begin{equation}q_{\theta}(x) = \frac{e^{-U_{\theta}(x)}}{Z_{\theta}}\end{equation}

其中$U_{\theta}$是带参数$\theta$的未定函数,我们称为“能量函数”,而$Z_{\theta}$是归一化因子(配分函数)

\begin{equation}Z_{\theta} = \int e^{-U_{\theta}(x)}dx\label{eq:z}\end{equation}

这样的分布可以称为“能量分布”,在物理中也被称为“玻尔兹曼分布”。

至于为什么选择这样的能量分布,解释有很多,既可以说是从物理角度受到启发,也可以说是从最大熵原理中受到启发,甚至你也可以简单地认为只是因为这种分布相对容易处理而已。但不可否认,这种分布很常见、很实用,我们用得非常多的softmax激活,其实也就是假设了这种分布。

现在的困难是如何求出参数$\theta$来,而困难的来源则是配分函数$\eqref{eq:z}$通常难以显式地计算出来。当然,尽管实际计算存在困难,但不妨碍我们继续把推导进行下去。

为了求出参数$\theta$,我们先定义对数似然函数:

\begin{equation}\mathbb{E}_{x\sim p(x)} \big[\log q_{\theta}(x)\big]\end{equation}

我们希望它越大越好,也就是希望

\begin{equation}L_{\theta}=\mathbb{E}_{x\sim p(x)} \big[-\log q_{\theta}(x)\big]\end{equation}

越小越好,为此,我们对$L_{\theta}$使用梯度下降。我们有

\begin{equation}\begin{aligned}\nabla_{\theta}\log q_{\theta}(x)=&\nabla_{\theta}\log e^{-U_{\theta}(x)}-\nabla_{\theta}\log Z_{\theta}\\

=&-\nabla_{\theta} U_{\theta}(x)-\frac{1}{Z_{\theta}}\nabla_{\theta} Z_{\theta}\\

=&-\nabla_{\theta} U_{\theta}(x)-\frac{1}{Z_{\theta}}\nabla_{\theta} \int e^{-U_{\theta}(x)}dx\\

=&-\nabla_{\theta} U_{\theta}(x)+\frac{1}{Z_{\theta}} \int e^{-U_{\theta}(x)}\nabla_{\theta} U_{\theta}(x) dx\\

=&-\nabla_{\theta} U_{\theta}(x)+\int \frac{e^{-U_{\theta}(x)}}{Z_{\theta}}\nabla_{\theta} U_{\theta}(x) dx\\

=&-\nabla_{\theta} U_{\theta}(x)+\mathbb{E}_{x\sim q_{\theta}(x)}\big[\nabla_{\theta} U_{\theta}(x)\big]

\end{aligned}\end{equation}

所以

\begin{equation}\nabla_{\theta} L_{\theta} = \mathbb{E}_{x\sim p(x)}\big[\nabla_{\theta} U_{\theta}(x)\big] - \mathbb{E}_{x\sim q_{\theta}(x)}\big[\nabla_{\theta} U_{\theta}(x)\big]\label{eq:q-grad}\end{equation}

这意味着梯度下降的更新公式是

\begin{equation}\theta \leftarrow \theta - \varepsilon \Big(\mathbb{E}_{x\sim p(x)}\big[\nabla_{\theta} U_{\theta}(x)\big] - \mathbb{E}_{x\sim q_{\theta}(x)}\big[\nabla_{\theta} U_{\theta}(x)\big]\Big)\label{eq:q-grad-gd}\end{equation}

注意到式$\eqref{eq:q-grad}$的特点,它是$\nabla_{\theta} U_{\theta}(x)$分别在真实分布下和拟合分布下的均值之差,这就是机器学习中著名的“正相”和“负相”的分解,式$\eqref{eq:q-grad}$体现了正负相之间的对抗,也有人将其对应为我们做梦的过程。

在这部分中,我们表明“容易分析”与“容易采样”是很难兼容的,容易理论分析的模型,在实验上难以采样计算,而容易采样计算的模型,难以进行简明的理论推导。而试图将两者的优点结合起来,就得到了GAN模型。

理论分析与实验采样

事实上,式$\eqref{eq:q-grad}$和式$\eqref{eq:q-grad-gd}$表明我们开始假设的能量分布模型的理论分析并不困难,但是落实到实验中,我们发现必须要完成从$q_{\theta}$中采样:$\mathbb{E}_{x\sim q_{\theta}(x)}$。也就是说,给定一个具体的$U_{\theta}(x)$,我们要想办法从$q_{\theta}(x)=e^{-U_{\theta}(x)}/Z_{\theta}$中采样出一批$x$出来。

然而,就目前而言,我们对从$q_{\theta}(x)=e^{-U_{\theta}(x)}/Z_{\theta}$中采样并没有任何经验。对于我们来说,方便采样的是如下的过程

\begin{equation}z\sim q(z),\quad x = G_{\varphi}(z)\end{equation}

这里的$q(z)$代表着标准正态分布。也就是说,我们可以从标准正态分布中采样出一个$z$出来,然后通过固定的模型$G_{\varphi}$变换为我们想要的$x$。这意味着这种分布的理论表达式是:

\begin{equation}q_{\varphi}(x) = \int \delta\big(x - G_{\varphi}(z)\big)q(z)dz\label{eq:q-varphi}\end{equation}

问题是,如果用$q_{\varphi}(x)$代替原来的$q_{\theta}(x)$,那么采样是方便了,但是类似的理论推导就困难了,换句话说,我们根本推导不出类似$\eqref{eq:q-grad-gd}$的结果来。

那么,一个异想天开的念头是:能不能把两者结合起来,在各自擅长的地方发挥各自的优势?

式$\eqref{eq:q-grad-gd}$中的$\mathbb{E}_{x\sim q_{\theta}(x)}$不是难以实现吗,那我只把这部分用$\mathbb{E}_{x\sim q_{\varphi}(x)}$代替好了:

\begin{equation}\theta \leftarrow \theta - \varepsilon \Big(\mathbb{E}_{x\sim p(x)}\big[\nabla_{\theta} U_{\theta}(x)\big] - \mathbb{E}_{x\sim q_{\varphi}(x)}\big[\nabla_{\theta} U_{\theta}(x)\big]\Big)\end{equation}

也就是

\begin{equation}\theta \leftarrow \theta - \varepsilon \Big(\mathbb{E}_{x\sim p(x)}\big[\nabla_{\theta} U_{\theta}(x)\big] - \mathbb{E}_{x=G_{\varphi}(z),z\sim q(z)}\big[\nabla_{\theta} U_{\theta}(x)\big]\Big)\label{eq:q-grad-gd-new}\end{equation}

现在采样是方便了,但前提是$q_{\varphi}(x)$跟$q_{\theta}(x)$足够接近才行呀(因为$q_{\theta}(x)$才是标准的、正确的),所以,我们用KL散度来度量两者的差异:

\begin{equation}\begin{aligned}KL\big(q_{\varphi}(x)\big\Vert q_{\theta}(x)\big)=&\int q_{\varphi}(x) \log \frac{q_{\varphi}(x)}{q_{\theta}(x)}dx \\

=& - H_{\varphi}(X) + \mathbb{E}_{x\sim q_{\varphi}(x)}\big[U_{\theta}(x)\big]+\log Z_{\theta}\end{aligned}\end{equation}

式$\eqref{eq:q-grad-gd-new}$有效的前提是$q_{\varphi}(x)$跟$q_{\theta}(x)$足够接近,也就是上式足够小,而对于固定的$q_{\theta}(x)$,$Z_{\theta}$是一个常数,所以$\varphi$的优化目标是:

\begin{equation}\varphi =\mathop{\arg\min}_{\varphi} - H_{\varphi}(X) + \mathbb{E}_{x\sim q_{\varphi}(x)}\big[U_{\theta}(x)\big]\label{eq:varphi-gd}\end{equation}

这里$H_{\varphi}(X) = - \int q_{\varphi}(x) \log q_{\varphi}(x) dx$代表$q_{\varphi}(x)$的熵。$- H_{\varphi}(X)$希望熵越大越好,这意味着多样性;$\mathbb{E}_{x\sim q_{\varphi}(x)}[U_{\theta}(x)]$希望图片势能越小越好,这意味着真实性。

另外一方面,注意到式$\eqref{eq:q-grad-gd-new}$实际上是目标

\begin{equation}\theta =\mathop{\arg\min}_{\theta} \mathbb{E}_{x\sim p(x)}\big[U_{\theta}(x)\big] - \mathbb{E}_{x=G_{\varphi}(z),z\sim q(z)}\big[U_{\theta}(x)\big]\label{eq:theta-gd}\end{equation}

的梯度下降公式。所以我们发现,整个过程实际上就是$\eqref{eq:theta-gd}$和$\eqref{eq:varphi-gd}$的交替梯度下降。而正如第一篇所说的,$\theta$的这个目标可能带来数值不稳定性,基于第一篇所说的理由,真样本应该在极小值点附近,所以我们可以把梯度惩罚项补充进$\eqref{eq:theta-gd}$,得到最终的流程是:

\begin{equation}\begin{aligned}\theta =&\,\mathop{\arg\min}_{\theta} \mathbb{E}_{x\sim p(x)}\big[U_{\theta}(x)\big] - \mathbb{E}_{x=G_{\varphi}(z),z\sim q(z)}\big[U_{\theta}(x)\big] + \lambda \mathbb{E}_{x\sim p(x)}\big[\Vert \nabla_x U_{\theta}(x)\Vert^2\big]\\

\varphi =&\,\mathop{\arg\min}_{\varphi} - H_{\varphi}(X) + \mathbb{E}_{x=G_{\varphi}(z),z\sim q(z)}\big[U_{\theta}(x)\big]

\end{aligned}\label{eq:gan-energy}\end{equation}

这便是基于梯度惩罚的GAN模型,我们在 《能量视角下的GAN模型(一)》 中已经把它“头脑风暴”出来了,而现在我们从能量模型的数学分析中把它推导出来了。

所以说,GAN实际上就是能量模型和采样模型各自扬长避短的结果。

现在,距离完整地实现整个模型,就差$H_{\varphi}(X)$了。我们已经说过

\begin{equation}H_{\varphi}(X) = - \int q_{\varphi}(x) \log q_{\varphi}(x) dx\end{equation}

代表$q_{\varphi}(x)$的熵,而$q_{\varphi}(x)$的理论表达式是$\eqref{eq:q-varphi}$,积分难以计算,所以$H_{\varphi}(X)$也难以计算。

打破这一困境的思路是将熵转化为互信息,然后转化为互信息的估计,其估计方式有两种:通过f散度的方式(理论上精确)估计,或者通过信息下界的方式估计。

首先,我们可以利用$x=G_{\varphi}(z)$这一点:$x=G_{\varphi}(z)$意味着条件概率$q_{\varphi}(x|z) = \delta\big(x - G(z)\big)$,即一个确定性的模型,也可以理解为均值为$G(z)$、方差为0的高斯分布$\mathcal{N}(x;G_{\varphi}(z),0)$。

然后我们去考虑互信息$I(X,Z)$:

\begin{equation}\begin{aligned}I_{\varphi}(X,Z)=&\iint q_{\varphi}(x|z)q(z)\log \frac{q_{\varphi}(x|z)}{q_{\varphi}(x)}dxdz\\

=&\iint q_{\varphi}(x|z)q(z)\log q_{\varphi}(x|z) dxdz - \iint q_{\varphi}(x|z)q(z) \log q_{\varphi}(x)dxdz\\

=&\int q(z)\int q_{\varphi}(x|z)q(z)\log q_{\varphi}(x|z) dx + H(X)

\end{aligned}\end{equation}

现在我们找出了$I_{\varphi}(X,Z)$和$H_{\varphi}(X)$的关系,它们的差是

\begin{equation}\int q(z)\int q_{\varphi}(x|z)q(z)\log q_{\varphi}(x|z) dx\triangleq -H_{\varphi}(X|Z)\end{equation}

事实上$H_{\varphi}(X|Z)$称为“条件熵”。

如果我们处理的是离散型分布,那么因为$x=G_{\varphi}(z)$是确定性的,所以$q_{\varphi}(x|z)\equiv 1$,那么$H_{\varphi}(X|Z)$为0,即$I_{\varphi}(X,Z)=H_{\varphi}(X)$;如果是连续型分布,前面说了可以理解为方差为0的高斯分布$\mathcal{N}(x;G_{\varphi}(z),0)$,我们可以先考虑常数方差的情况$\mathcal{N}(x;G(z),\sigma^2)$,发现$H_{\varphi}(X|Z)\sim \log \sigma^2 $是一个常数,然后$\sigma \to 0$,不过发现结果是无穷大。无穷大原则上是不能计算的,但事实上方差也不需要等于0,只要足够小,肉眼难以分辨即可。

所以,总的来说我们可以确定互信息$I_{\varphi}(X,Z)$与熵$H_{\varphi}(X)$只相差一个无关紧要的常数,所以在式$\eqref{eq:gan-energy}$中,可以将$H_{\varphi}(X)$替换为$I_{\varphi}(X,Z)$:

\begin{equation}\begin{aligned}\theta =&\,\mathop{\arg\min}_{\theta} \mathbb{E}_{x\sim p(x)}\big[U_{\theta}(x)\big] - \mathbb{E}_{x=G_{\varphi}(z),z\sim q(z)}\big[U_{\theta}(x)\big] + \lambda \mathbb{E}_{x\sim p(x)}\big[\Vert \nabla_x U_{\theta}(x)\Vert^2\big]\\

\varphi =&\,\mathop{\arg\min}_{\varphi} - I_{\varphi}(X,Z) + \mathbb{E}_{x=G_{\varphi}(z),z\sim q(z)}\big[U_{\theta}(x)\big]

\end{aligned}\label{eq:gan-energy-2}\end{equation}

现在我们要最小化$- I_{\varphi}(X,Z)$,也就是最大化互信息$I_{\varphi}(X,Z)$。直观上这也不难理解,因为这一项是用来防止mode callopse的,而如果一旦mode callopse,那么几乎任意的$z$都生成同一个$x$,$X,Z$的互信息一定不会大。

但是将目标从$H_{\varphi}(X)$改为$I_{\varphi}(X,Z)$,看起来只是形式上的转换,似乎依然还没有解决问题。但很幸运的是,我们已经做过最大化互信息的研究了,方法在 《深度学习的互信息:无监督提取特征》的“互信息本质”一节 ,也就是说,直接估算互信息已经有解决方案了,读者直接看那篇文章即可,不再重复论述。

如果不需要精确估计互信息,那么可以使用InfoGAN中的思路,得到互信息的一个下界,然后去优化这个下界。

从互信息定义出发:

\begin{equation}I_{\varphi}(X,Z)=\iint q_{\varphi}(x|z)q(z)\log \frac{q_{\varphi}(x|z)q(z)}{q_{\varphi}(x)q(z)}dxdz\end{equation}

记$q_{\varphi}(z|x) = q_{\varphi}(x|z)q(z)/q_{\varphi}(x)$,这代表精确的后验分布;然后对于任意近似的后验分布$p(z|x)$,我们有

\begin{equation}\begin{aligned}I_{\varphi}(X,Z)=&\iint q_{\varphi}(x|z)q(z)\log \frac{q_{\varphi}(z|x)}{q(z)}dxdz\\

=&\iint q_{\varphi}(x|z)q(z)\log \frac{p(z|x)}{q(z)}dxdz + \iint q_{\varphi}(x|z)q(z)\log \frac{q_{\varphi}(z|x)}{p(z|x)}dxdz\\

=&\iint q_{\varphi}(x|z)q(z)\log \frac{p(z|x)}{q(z)}dxdz + \int q_{\varphi}(x)KL\Big(q_{\varphi}(z|x) \Big\Vert p(z|x)\Big)dz\\

\geq &\iint q_{\varphi}(x|z)q(z)\log \frac{p(z|x)}{q(z)}dxdz\\

=& \iint q_{\varphi}(x|z)q(z)\log p(z|x) - \underbrace{\iint q_{\varphi}(x|z)q(z)\log q(z) dxdz}_{=\int q(z)\log q(z)dz\,\,\text{是一个常数}}

\end{aligned}\end{equation}

也就是说,互信息大于等于$\iint q_{\varphi}(x|z)q(z)\log p(z|x)$加上一个常数。如果最大化互信息,可以考虑最大化这个下界。由于$p(z|x)$是任意的,可以简单假设$p(z|x)=\mathcal{N}(z;E(x),\sigma^2)$,其中$E(x)$是一个带参数的编码器,代入计算并省去多余的常数,可以发现相当于在生成器加入一项loss:

\begin{equation}\mathbb{E}_{z\sim q(z)} \big[\Vert z - E(G(z))\Vert^2\big]\end{equation}

所以,基于InfoGAN的信息下界思路,式$\eqref{eq:gan-energy}$变为:

\begin{equation}\begin{aligned}\theta =&\,\mathop{\arg\min}_{\theta} \mathbb{E}_{x\sim p(x)}\big[U_{\theta}(x)\big] - \mathbb{E}_{z\sim q(z)}\big[U_{\theta}(G_{\varphi}(z))\big] + \lambda_1 \mathbb{E}_{x\sim p(x)}\big[\Vert \nabla_x U_{\theta}(x)\Vert^2\big]\\

\varphi,E =&\,\mathop{\arg\min}_{\varphi,E} \mathbb{E}_{z\sim q(z)}\big[U_{\theta}(G_{\varphi}(z)) + \lambda_2 \Vert z - E(G_{\varphi}(z))\Vert^2\big]

\end{aligned}\label{eq:gan-energy-3}\end{equation}

到这里,我们已经从两个角度完成了$H_{\varphi}(X)$的处理,从而完成了整个GAN和能量模型的推导。

回顾开头,我们是从能量分布出发推导出了GAN模型,而能量函数$U(x)$也就是GAN模型中的判别器。既然$U(x)$具有能量函数的含义,那么训练完成后,我们可以利用能量函数的特性做更多有价值的事情,例如引入MCMC来提升效果。

其实对于MCMC,我只是略懂它的含义,并不懂它的方法和精髓,所谓“简介”,仅仅是对其概念做一些基本的介绍。MCMC是“马尔科夫链蒙特卡洛方法(Markov Chain Monte Carlo)”,在我的理解里,它大概是这么个东西:我们难以直接从某个给定的分布$q(x)$中采样出样本来,但是我们可以构造如下的随机过程:

\begin{equation}x_{n+1} = f(x_n, \alpha)\label{eq:suijidigui}\end{equation}

其中$\alpha$是一个便于实现的随机过程,比如从二元分布、正态分布采样等。这样一来,从某个$x_0$出发,得到的序列$\{x_1,x_2,\dots,x_n,\dots\}$是随机的。

如果进一步能证明式$\eqref{eq:suijidigui}$的静态分布正好是$q(x)$,那么就意味着序列$\{x_1,x_2,\dots,x_n,\dots\}$正是从$q(x)$中采样出来的一批样本,这样就实现了从$q(x)$中采样了,只不过采样的结果经过了一定的顺序排列。

式$\eqref{eq:suijidigui}$的一个特例是Langevin方程:

\begin{equation}x_{t+1} = x_t - \varepsilon \nabla_x U(x_t) + \sqrt{\varepsilon}\alpha,\quad \alpha \sim \mathcal{N}(\alpha;0,1)\label{eq:sde}\end{equation}

它也称为随机微分方程,当$\varepsilon\to 0$时,它的静态分布正好是能量分布

\begin{equation}p(x) = \frac{e^{-U(x)}}{Z}\end{equation}

也就是说,给定能量函数$U(x)$后,我们可以通过式$\eqref{eq:sde}$实现从能量分布中采样,这就是能量分布的MCMC采样的原始思想。

当然,直接从能量函数和式$\eqref{eq:sde}$中采样$x$,可能不大现实,因为$x$维度(常见的情景下,$x$代表图片)过大,可控性难以保证。另一方面,式$\eqref{eq:sde}$最后一项是高斯噪声,所以只要$\varepsilon\neq 0$,那么结果必然是有噪声的,图片真实性也难以保证。

一个有趣的转化是:我们可以不直接考虑$x$的MCMC采样,而考虑$z$的采样。因为在前面的模型中,我们最后既得到了能量函数$U_{\theta}(x)$,也得到了生成模型$G_{\varphi}(z)$,这意味着$z$的能量函数为

\begin{equation}U_{\theta}(G_{\varphi}(z))\end{equation}

有了$z$的能量函数,我们可以通过式$\eqref{eq:sde}$实现$z$的MCMC采样:

\begin{equation}z_{t+1} = z_t - \varepsilon \nabla_z U_{\theta}(G_{\varphi}(z_t)) + \sqrt{\varepsilon}\alpha,\quad \alpha \sim \mathcal{N}(\alpha;0,1)\label{eq:sde-2}\end{equation}

这样刚才说的问题全部都没有了,因为$z$的维度一般比$x$小得多,而且也不用担心$\varepsilon\neq 0$带来噪声,因为$z$本来就是噪声。

到这里,如果头脑还没有混乱的读者也许会回过神来:$z$的分布不就是标准的正态分布吗?采样起来不是很容易吗?为啥还要折腾一套MCMC采样?

理想情况下,$z$的能量函数$U_{\theta}(G_{\varphi}(z))$所对应的能量分布

\begin{equation}q(z)=\frac{e^{-U_{\theta}(G_{\varphi}(z))}}{Z}\end{equation}

确实应该就是我们原始传递给它的标准正态分布。但事实上,理想和现实总有些差距的,当我们用标准正态分布去训练好一个生成模型后,最后能产生真实的样本的噪声往往会更窄一些,这就需要一些截断技巧,或者说筛选技巧。

比如,基于flow的生成模型在训练完成后,往往使用“退火”技巧,也就是在生成时将噪声的方差设置小一些,这样能生成一些更稳妥的样本,可以参考 《细水长flow之NICE:流模型的基本概念与实现》 。而去年发布的BigGAN,也讨论了GAN中对噪声的截断技巧。

如果我们相信我们的模型,相信能量函数$U_{\theta}(x)$和生成模型$G_{\varphi}(z)$都是有价值的,那么我们有理由相信$e^{-U_{\theta}(G_{\varphi}(z))}/Z$会是一个比标准正态分布更好的$z$的分布(生成更真实的$x$的$z$的分布,因为它将$G_{\varphi}(z)$也纳入了分布的定义中),所以MCMC采样$\eqref{eq:sde-2}$能够提升采样后的生成质量,原论文已经验证了这一点。我们可以将它理解为一种更好的截断技巧。

采样过程$\eqref{eq:sde-2}$其实依然会比较低效,原论文事实上用的是改进版本,称为MALA(Metropolis-adjusted Langevin algorithm),它在$\eqref{eq:sde-2}$的基础上进一步引入了一个筛选过程:

\begin{equation}\begin{aligned}\tilde{z}_{t+1} =& z_t - \varepsilon \nabla_z U_{\theta}(G_{\varphi}(z_t)) + \sqrt{\varepsilon}\alpha,\quad \alpha \sim \mathcal{N}(\alpha;0,1)\\

\\

z_{t+1} =& \left\{\begin{aligned}&\tilde{z}_{t+1}, \quad \text{如果}\beta<\gamma\\ &z_t, \quad \text{其他情况}\end{aligned}\right.,\quad \beta \sim U[0,1]\\

\\

\gamma =& \min\left\{1, \frac{q(\tilde{z}_{t+1})q(z_t|\tilde{z}_{t+1})}{q(\tilde{z}_{t})q(\tilde{z}_{t+1}|z_t)}\right\}

\end{aligned}\end{equation}

这里

\begin{equation}\begin{aligned}q(z)\propto&\, \exp\Big(-U_{\theta}(G_{\varphi}(z))\Big)\\

q(z'|z)\propto&\, \exp\left(-\frac{1}{2\varepsilon}\Vert z' - z + \varepsilon \nabla_z U_{\theta}(G_{\varphi}(z))\Vert^2\right)

\end{aligned}\end{equation}

也就是说以概率$\gamma$接受$z_{t+1}=\tilde{z}_{t+1}$,以$1-\gamma$的概率保持不变。按照 维基百科上的说法 ,这样的改进能够让采样过程更有机会采样到高概率的样本,这也就意味着能生成更多的真实样本。(笔者并不是很懂这一套理论,所以,只能照搬了~)

又是一篇公式长文,总算把能量分布下的GAN的数学推导捋清楚了,GAN是调和“理论分析”与“实验采样”矛盾的产物。总的来说,笔者觉得整个推导过程还是颇具启发性的,也能让我们明白GAN的关键之处和问题所在。

能量视角是一个偏向数学物理的视角,一旦能将机器学习和数学物理联系起来,还将可以很直接地从数学物理处获得启发,甚至使得对应的机器学习不再“黑箱”。

转载到请包括本文地址: https://kexue.fm/archives/6331

如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。

如果您觉得本文还不错,欢迎/本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!

如果您需要引用本文,请参考:

苏剑林. (2019, Feb 15). 《能量视角下的GAN模型(二):GAN=“分析”+“采样” 》[Blog post]. Retrieved from https://kexue.fm/archives/6331


以上所述就是小编给大家介绍的《能量视角下的GAN模型(二):GAN=“分析”+“采样”》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

硅谷之火

硅谷之火

保罗·弗赖伯格、迈克尔·斯韦因 / 张华伟 编译 / 中国华侨出版社 / 2014-11-1 / CNY 39.80

《硅谷之火:人与计算机的未来》以生动的故事,介绍了计算机爱好者以怎样的创新精神和不懈的努力,将计算机技术的力量包装在一个小巧玲珑的机壳里,实现了个人拥有计算机的梦想。同时以独特的视角讲述了苹果、微软、太阳微系统、网景、莲花以及甲骨文等公司的创业者们在实现个人计算机梦想的过程中创业的艰辛、守业的艰难、失败的痛苦,在激烈竞争的环境中奋斗的精神以及在技术上不断前进的历程。一起来看看 《硅谷之火》 这本书的介绍吧!

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具