内容简介:《体系相对宏大,一篇肯定写不完,容我娓娓道来,通俗地说清楚来龙去脉。并发的任务对同一个临界资源进行操作,如果不采取措施,可能导致不一致,故必须进行
《 InnoDB行锁,如何锁住一条不存在的记录? 》埋了一个坑,没想到评论反响剧烈,大家都希望深挖下去。原计划写写InnoDB的锁结束这个case,既然呼声这么高,干脆全盘 系统性 的写写InnoDB的 并发控制 , 锁 , 事务模型 好了。
体系相对宏大,一篇肯定写不完,容我娓娓道来,通俗地说清楚来龙去脉。
一、并发控制
为啥要进行并发控制?
并发的任务对同一个临界资源进行操作,如果不采取措施,可能导致不一致,故必须进行 并发控制 (Concurrency Control)。
技术上,通常如何进行并发控制?
通过并发控制保证数据一致性的常见手段有:
- 锁(Locking)
- 数据多版本(Multi Versioning)
二、锁
如何使用普通锁保证一致性?
普通锁,被使用最多:
(1)操作数据前,锁住,实施互斥,不允许其他的并发任务操作;
(2)操作完成后,释放锁,让其他任务执行;
如此这般,来保证一致性。
普通锁存在什么问题?
简单的锁住太过粗暴,连“读任务”也无法并行,任务执行过程本质上是串行的。
于是出现了 共享锁 与 排他锁 :
- 共享锁( S hare Locks,记为S锁),读取数据时加S锁
- 排他锁(e X clusive Locks,记为X锁),修改数据时加X锁
共享锁与排他锁的玩法是:
- 共享锁之间不互斥,简记为:读读可以并行
- 排他锁与任何锁互斥,简记为:写读,写写不可以并行
可以看到,一旦写数据的任务没有完成,数据是不能被其他任务读取的,这对并发度有较大的影响。
画外音:对应到数据库,可以理解为,写事务没有提交,读相关数据的select也会被阻塞。
有没有可能,进一步提高并发呢?
即使写任务没有完成,其他读任务也可能并发,这就引出了数据多版本。
三、数据多版本
数据多版本是一种能够进一步提高并发的方法,它的 核心原理 是:
(1)写任务发生时,将数据克隆一份,以版本号区分;
(2)写任务操作新克隆的数据,直至提交;
(3)并发读任务可以继续读取旧版本的数据,不至于阻塞;
如上图:
1. 最开始数据的版本是V0;
2. T1时刻发起了一个写任务,这是把数据clone了一份,进行修改,版本变为V1,但任务还未完成;
3. T2时刻并发了一个读任务,依然可以读V0版本的数据;
4. T3时刻又并发了一个读任务,依然不会阻塞;
可以看到,数据多版本,通过“读取旧版本数据”能够极大提高任务的并发度。
提高并发的演进思路,就在如此:
- 普通锁 ,本质是串行执行
- 读写锁 ,可以实现读读并发
- 数据多版本 ,可以实现读写并发
画外音:这个思路,比整篇文章的其他技术细节更重要,希望大家牢记。
好,对应到InnoDB上,具体是怎么玩的呢?
四、redo, undo, 回滚段
在进一步介绍InnoDB如何使用“读取旧版本数据”极大提高任务的并发度之前,有必要先介绍下redo日志,undo日志,回滚段(rollback segment)。
为什么要有redo 日志?
数据库事务提交后,必须将更新后的数据刷到磁盘上,以保证ACID特性。磁盘 随机写 性能较低,如果每次都刷盘,会极大影响数据库的吞吐量。
优化方式是,将修改行为先写到redo日志里(此时变成了 顺序写 ),再定期将数据刷到磁盘上,这样能极大提高性能。
画外音:这里的架构设计方法是, 随机写优化为顺序写 ,思路更重要。
假如某一时刻,数据库崩溃,还没来得及刷盘的数据,在数据库重启后,会重做redo日志里的内容,以保证已提交事务对数据产生的影响都刷到磁盘上。
一句话,redo日志用于保障,已提交事务的ACID特性。
为什么要有undo 日志?
数据库事务未提交时,会将事务修改数据的镜像(即修改前的旧版本)存放到undo日志里,当事务回滚时,或者数据库奔溃时,可以利用undo日志,即旧版本数据,撤销未提交事务对数据库产生的影响。
画外音:更细节的,
对于 insert操作 ,undo日志记录新数据的PK(ROW_ID),回滚时直接删除;
对于 delete/update操作 ,undo日志记录旧数据row,回滚时直接恢复;
他们分别存放在不同的buffer里。
一句话,undo日志用于保障,未提交事务不会对数据库的ACID特性产生影响。
什么是回滚段?
存储undo日志的地方,是回滚段。
undo日志和回滚段和InnoDB的MVCC密切相关,这里举个例子展开说明一下。
栗子:
t(id PK, name);
数据为:
1, shenjian
2, zhangsan
3, lisi
此时没有事务未提交,故回滚段是空的。
接着启动了一个事务:
start trx;
delete (1, shenjian);
update set(3, lisi) to (3, xxx);
insert (4, wangwu);
并且事务处于 未提交 的状态。
可以看到:
(1)被删除前的(1, shenjian)作为旧版本数据,进入了回滚段;
(2)被修改前的(3, lisi)作为旧版本数据,进入了回滚段;
(3)被插入的数据,PK(4)进入了回滚段;
接下来,假如事务rollback,此时可以通过回滚段里的undo日志回滚。
画外音:假设事务提交,回滚段里的undo日志可以删除。
可以看到:
(1)被删除的旧数据恢复了;
(2)被修改的旧数据也恢复了;
(3)被插入的数据,删除了;
事务回滚成功,一切如故。
四、InnoDB 是基于多版本并发控制的存储引擎
《 InnoDB,5项最佳实践,知其所以然? 》提到,InnoDB是高并发互联网场景最为推荐的存储引擎,根本原因,就是其 多版本并发控制 (Multi Version Concurrency Control, MVCC)。行锁,并发,事务回滚等多种特性都和MVCC相关。
MVCC就是通过“读取旧版本数据”来降低并发事务的锁冲突,提高任务的并发度。
核心问题:
旧版本数据存储在哪里?
存储旧版本数据,对MySQL 和InnoDB 原有架构是否有巨大冲击?
通过上文undo日志和回滚段的铺垫,这两个问题就非常好回答了:
(1)旧版本数据存储在回滚段里;
(2)对 MySQL 和InnoDB原有架构体系冲击不大;
InnoDB的内核,会对所有row数据增加三个内部属性:
(1) DB_TRX_ID ,6字节,记录每一行最近一次修改它的事务ID;
(2) DB_ROLL_PTR ,7字节,记录指向回滚段undo日志的指针;
(3) DB_ROW_ID ,6字节,单调递增的行ID;
InnoDB 为何能够做到这么高的并发?
回滚段里的数据,其实是历史数据的快照(snapshot),这些数据是不会被修改,select可以肆无忌惮的并发读取他们。
快照读(Snapshot Read),这种 一致性不加锁的读 (Consistent Nonlocking Read),就是InnoDB并发如此之高的核心原因之一。
这里的 一致性 是指,事务读取到的数据,要么是事务开始前就已经存在的数据(当然,是其他已提交事务产生的),要么是事务自身插入或者修改的数据。
什么样的select 是快照读?
除非显示加锁,普通的select语句都是快照读,例如:
select * from t where id>2;
这里的显示加锁,非快照读是指:
select * from t where id>2 lock in share mode ;
select * from t where id>2 for update ;
问题来了,这些显示加锁的读,是什么读?会加什么锁?和事务的隔离级别又有什么关系?
本节的内容已经够多了,且听下回分解。
总结
(1)常见并发控制保证数据一致性的方法有 锁 , 数据多版本 ;
(2) 普通锁 串行, 读写锁 读读并行, 数据多版本 读写并行;
(3) redo日志 保证已提交事务的ACID特性,设计思路是,通过顺序写替代随机写,提高并发;
(4) undo日志 用来回滚未提交的事务,它存储在回滚段里;
(5)InnoDB是基于 MVCC 的存储引擎,它利用了存储在回滚段里的undo日志,即数据的旧版本,提高并发;
(6)InnoDB之所以并发高,快照读不加锁;
(7)InnoDB所有普通select都是快照读;
画外音:本文的知识点均基于MySQL5.6。
以上所述就是小编给大家介绍的《InnoDB并发如此高,原因竟然在这?》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
商业模式新生代
亚历山大•奥斯特瓦德 (Alexander Osterwalder)、伊夫•皮尼厄 (Yves Pigneur) / 王帅、毛心宇、严威 / 机械工业出版社 / 2011-8-15 / 88.00元
中文官网:http://www.bizmodel.org 内容简介:当你愉快的看完第一章:商业模式画布,赫然发现这些构成要素全 都交织成一幅清晰的图像在脑海中呈现,它们如何互相影响、如何交互作用全都历历在目。利用商业模式画布分析瑞士银行、Google、Lego、Wii 、Apple等跨国企业,归纳出三种不同的产业 模式,也涵括新近的热门现象免费效应及长尾理论等。在这些有趣的例子中,我们不仅更......一起来看看 《商业模式新生代》 这本书的介绍吧!