内容简介:在机器学习中,对于监督学习我们可以将其分为两类模型:判别式模型和生成式模型。可以简单地说,生成式模型是针对联合分布进行建模,而判别式模型则针对条件分布建模。从感性上认识,生成式能学习到更多信息,而判别式则较少,就好比学习英语,有类人只学会听懂这是英语,有类人学会了听懂这是英语并且知道说的是什么。另外,生成式模型在一定条件下也可以转换成判别式模型,比如通过贝叶斯公式进行转换。
在机器学习中,对于监督学习我们可以将其分为两类模型:判别式模型和生成式模型。可以简单地说,生成式模型是针对联合分布进行建模,而判别式模型则针对条件分布建模。
从感性上认识,生成式能学习到更多信息,而判别式则较少,就好比学习英语,有类人只学会听懂这是英语,有类人学会了听懂这是英语并且知道说的是什么。另外,生成式模型在一定条件下也可以转换成判别式模型,比如通过贝叶斯公式进行转换。
常见生成式模型
- 混合高斯模型,估计了不同输入和类别的联合分布。
- 朴素贝叶斯,模型训练时采用联合概率分布积。
- 隐马尔科夫模型,建立了状态序列和观察序列的联合分布。
- 贝叶斯网络,概率图模型中的有向图网络,对联合分布建模,由各自局部条件概率分布相乘。
- 马尔科夫随机场,概率图模型中无向图网络,同样对联合分布建模,分解为极大团上势函数的乘积。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 机器学习判别式与生成式
- 机器学习中的判别式模型和生成式模型
- CVPR 2019 | 基于级联生成式与判别式学习的乳腺钼靶微钙化检测
- 生成模型学习笔记:从高斯判别分析到朴素贝叶斯
- MySQL如何判别InnoDB表是独立表空间还是共享表空间
- 鲁棒异构判别分析的单样本人脸识别(文末附文章地址)
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Don't Make Me Think
Steve Krug / New Riders Press / 18 August, 2005 / $35.00
Five years and more than 100,000 copies after it was first published, it's hard to imagine anyone working in Web design who hasn't read Steve Krug's "instant classic" on Web usability, but people are ......一起来看看 《Don't Make Me Think》 这本书的介绍吧!