机器学习判别式与生成式

栏目: 数据库 · 发布时间: 6年前

内容简介:在机器学习中,对于监督学习我们可以将其分为两类模型:判别式模型和生成式模型。可以简单地说,生成式模型是针对联合分布进行建模,而判别式模型则针对条件分布建模。从感性上认识,生成式能学习到更多信息,而判别式则较少,就好比学习英语,有类人只学会听懂这是英语,有类人学会了听懂这是英语并且知道说的是什么。另外,生成式模型在一定条件下也可以转换成判别式模型,比如通过贝叶斯公式进行转换。

在机器学习中,对于监督学习我们可以将其分为两类模型:判别式模型和生成式模型。可以简单地说,生成式模型是针对联合分布进行建模,而判别式模型则针对条件分布建模。

从感性上认识,生成式能学习到更多信息,而判别式则较少,就好比学习英语,有类人只学会听懂这是英语,有类人学会了听懂这是英语并且知道说的是什么。另外,生成式模型在一定条件下也可以转换成判别式模型,比如通过贝叶斯公式进行转换。

常见生成式模型

  • 混合高斯模型,估计了不同输入和类别的联合分布。
  • 朴素贝叶斯,模型训练时采用联合概率分布积。
  • 隐马尔科夫模型,建立了状态序列和观察序列的联合分布。
  • 贝叶斯网络,概率图模型中的有向图网络,对联合分布建模,由各自局部条件概率分布相乘。
  • 马尔科夫随机场,概率图模型中无向图网络,同样对联合分布建模,分解为极大团上势函数的乘积。

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

程序员实用算法

程序员实用算法

Andrew Binstock、John Rex / 陈宗斌 / 机械工业出版社 / 2009-9 / 65.00元

《程序员实用算法》重点关注的是实用、立即可用的代码,并且广泛讨论了可移植性和特定于实现的细节。《程序员实用算法》作者介绍了一些有用但很少被讨论的算法,它们可用于语音查找、日期和时间例程(直到公元1年)、B树和索引文件、数据压缩、任意精度的算术、校验和与数据验证,并且还最全面地介绍了查找例程、排序算法和数据结构。 《程序员实用算法》结构清晰,示例丰富,可作为广大程序员的参考用书。一起来看看 《程序员实用算法》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具