内容简介:微软于一周前发布了IDataView 组件为表格式数据提供了非常高效的处理方式,尤其是用于机器学习和高级分析应用。它被设计为可以高效地处理高维数据和大型数据集。并且也适合处理属于更大的分布式数据集中的单个数据区块结点。在 ML.NET 0.10 中,IDataView 被拆分成单个程序集和 NuGet 类库包。这对于与其它 API 及框架交互是极重要的一步。
微软于一周前发布了 ML.NET 0.10 版本 (不是 0.1,接下来还会有 0.11, 0.12,然后才是 1.0 版本)。
更新亮点包括
-
IDataView 被单独作为一个类库包
-
场感知分解机训练器支持多个特征列
-
支持返回多个预测标签
-
源自社区的示例页面
IDataView 被单独作为一个类库包
IDataView 组件为表格式数据提供了非常高效的处理方式,尤其是用于机器学习和高级分析应用。它被设计为可以高效地处理高维数据和大型数据集。并且也适合处理属于更大的分布式数据集中的单个数据区块结点。
在 ML.NET 0.10 中,IDataView 被拆分成单个程序集和 NuGet 类库包。这对于与其它 API 及框架交互是极重要的一步。
在被拆分后,其它的类库将能直接引用它,而不需要引用整个 ML.NET。这样有助于第三方类库也能使用 IDataView 所提供的强大功能。
场感知分解机训练器支持多个特征列
在之前的 ML.NET 版本中,当使用场感知分解机(FFM)训练机器时,仅可以提供单个特征列。
在新的版本里,支持在 Options 参数里添加额外的特征列。
var ffmArgs = new FieldAwareFactorizationMachineTrainer.Options();
// Create the multiple field names.
ffmArgs.FeatureColumn = nameof(MyObservationClass.MyField1); // 首个字段
ffmArgs.ExtraFeatureColumns = new[]{ nameof(MyObservationClass.MyField2), nameof(MyObservationClass.MyField3) }; // 额外的字段
var pipeline = mlContext.BinaryClassification.Trainers.FieldAwareFactorizationMachine(ffmArgs);
var model = pipeline.Fit(dataView);
支持返回多个预测标签
之前的版本里,即使预测多类别分类问题,也只能返回单一的标签。
现在,这一缺陷终于被修复了(其实在内部逻辑里已经对多项预测完成处理,但过去的 API 只返回了单一的结果)。
源自社区的示例页面
作为 ML.NET Samples 的一部分,现在新增了一个特殊 页面 —— 由社区提供的多个示例。
里面有不少很好的例子:
▲照片查询的 WPF 应用,其内部运行 TensorFlow 模型,并导出为 ONNX 格式。
▲使用 ML.NET 的 UWP 应用
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- IDL871机器学习框架
- Facebook发布机器学习框架PyRobot,助力机器人开源社区
- JavaScript也能玩机器学习――5个开源 JavaScript 机器学习框架
- MediaPipe:跨平台机器学习应用开发框架
- 分布式机器学习框架与高维实时推荐系统
- 从Spark MLlib到美图机器学习框架实践
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
正当法律程序简史
(美)约翰·V.奥尔特 / 杨明成、陈霜玲 / 商务印书馆 / 2006-8 / 14.00元
本书的主题——正当法律程序,是英美法的核心概念,它使诸如法治、经济自由、个人自治以及免于政府专断行为的侵害等价值观念具体化,因而是法学领域一个永恒的主题,数百年以来一直是法学家、法官及律师关注的重点。本书以极为简洁、精确的语言总结了五百年法律发展的恢弘历史,为人们描述了正当法律程序观念发展演变的清晰轨迹。而沿着这条轨迹,人们可以准确地了解正当法律程序这一重要概念所包含的广泛的问题。 作为一本......一起来看看 《正当法律程序简史》 这本书的介绍吧!