Codeforces Round #538 (Div. 2) 解题报告

栏目: 编程工具 · 发布时间: 6年前

内容简介:顺序判断即比赛的时候忘记写 else 既然 PP 了,然后就 FST反正最后还是要前$ m \times k $ 个数字

A Got Any Grapes?

顺序判断即

比赛的时候忘记写 else 既然 PP 了,然后就 FST

#include <cstdio>

int an,dm,mi;
int gr,pu,bl;

int main(){
    scanf("%d%d%d", &an, &dm, &mi);
    scanf("%d%d%d", &gr, &pu, &bl);

    if(an > gr) {
        printf("NO\n");
        return 0;
    }
    else gr -= an;

    if(pu + gr < dm){
        printf("NO\n");
        return 0;
    }
    else {
        if(pu <= dm) {dm -= pu; pu = 0;}
        else {pu -= dm; dm = 0;}
        if(gr < dm) {
            printf("NO\n");
            return 0;
        }
        else gr -= dm;
    }

    if(gr + pu + bl < mi) printf("NO\n");
    else printf("YES\n");
}

B Yet Another Array Partitioning Task

反正最后还是要前$ m \times k $ 个数字

直接离散化,然后见当前区间有$ m $ 个就收

#include <cstdio>
#include <algorithm>

const long long N = 2e5 + 1e4;

struct node{
    long long now, id;
}b[N];

long long n, m, k, cnt, time;
long long a[N];
bool vis[N];

bool cmp(node a, node b){
    return a.now > b.now;
}

int main(){
    scanf("%lld%lld%lld", &n, &m, &k);
    for(long long i = 1; i <= n; i++){
        scanf("%lld", &a[i]);
        b[i].now = a[i], b[i].id = i;
    }
    std::sort(b + 1, b + n + 1, cmp);
    long long tmp = m * k;
    for(long long i = 1; i <= tmp; i++) vis[ b[i].id ] = true, cnt += b[i].now;
    printf("%lld\n",cnt);

    cnt = 0;
    for(long long i = 1; i <= n; i++){
        cnt += vis[i];
        if(cnt == m){
            time++;
            time < k && printf("%lld ",i);
            cnt = 0;
        }
    }
}

C. Trailing Loves (or L’oeufs?)

求 $ b $ 进制下 $ n! $ 的末尾的 0 的个数

显然我们要求中间乘出来有多少个$b$

接下来就是分解质因数,然后枚举求最小值即可

#include <cstdio>
#include <cmath>

const long long INF = 1e18 + 1e17;

inline long long Min(long long a, long long b){return a < b? a: b;}

struct node{
    long long now, cnt;
}pri[(int)(1e6)];

int pcnt;
long long n, b, tmp, cnt, ans = INF;

inline void get_pri(long long b){
    tmp = std::sqrt(b);
    for(long long i = 2; i <= tmp; i++){
        if(b % i == 0){
            pri[ ++pcnt ] = (node){i, 0};
            while(b % i == 0){
                pri[pcnt].cnt++;
                b/=i;
            }
        }
    }
    if(b != 1) pri[ ++pcnt ] = (node){b, 1};
}

int main(){
    scanf("%lld%lld", &n, &b);
    get_pri(b);
    for(int i = 1; i <= pcnt; i++){
        tmp = 1; cnt = 0;
        while(tmp * pri[i].now <= n){
            tmp *= pri[i].now;
            if(tmp < 0 || tmp % pri[i].now != 0) break;
            cnt += n / tmp;
        }
        ans = Min(ans, cnt/pri[i].cnt);
    }
    printf("%lld\n", ans);
}

D. Flood Fil

有一个非常显然的地方,就是我们每次有两个状态,当前联通部分向左对其或者想右对其

然后我们先把数列中的联通部分预处理出来,然后区间 dp 即可

#include <cstdio>
#include <cstring>

inline int Min(int a, int b){return a < b? a: b;}

const int N = 5100;

int n;
int a[N], l[N], r[N], f[N][N];

int main(){
    scanf("%d", &n);
    for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
    l[1] = 1;   
    for(int i = 2; i <= n; i++){
        if(a[i] == a[i - 1]) l[i] = l[i - 1];
        else l[i] = i;
    }
    r[n] = n;
    for(int i = n - 1; i >= 1; i--){
        if(a[i] == a[i + 1]) r[i] = r[i + 1];
        else r[i] = i;
    }
    memset(f, 0x3f, sizeof(f));
    for(int i = 1; i<= n;i ++) f[ l[i] ][ r[i] ] = 0;
    for(int len = 0; len < n; len++){
        for(int i = 1,j; i + len <= n; i++){
            j = i + len;
            if(i > 1 && j < n && a[i - 1] == a[j + 1])
                f[ l[i - 1] ][ r[j + 1] ] = Min(f[ l[i - 1] ][ r[j + 1] ],f[i][j] + 1);
            if(i > 1)
                f[ l[i - 1] ][j] = Min(f[ l[i - 1] ][j], f[i][j] + 1);
            if(j < n) 
                f[i][ r[j + 1] ] = Min(f[i][ r[j + 1] ], f[i][j] + 1);
        }
    }
    printf("%d", f[1][n]);
}

E. Arithmetic Progression

交互题目,60次询问内知道当前乱序等差数列的首项和公差

先二分找最大的,然后 random_shuffle 随机化询问,求与最大项差的 gcd 即为公差

#include <cstdio>
#include <algorithm>

int gcd(int a, int b){return b? gcd(b ,a%b): a;}
inline int Min(int a, int b){return a < b? a: b;}
inline int Aabs(int a){return a < 0? (0 - a): a;}

const int N = 1e6 + 1e5;

int n, global_tmp, d, max, chance_cnt = 60;
int a[N];

inline bool has_num(int now){
    printf("> %d\n",now);
    fflush(stdout);
    scanf("%d", &global_tmp);
    chance_cnt--;
    return global_tmp;
}

inline int binary_search_max(int max_limit){
    int left = 0, rig = max_limit, mid, res;
    while(left <= rig){
        mid = (left + rig) >> 1;
        if( has_num(mid) ) left = mid + 1;
        else rig = mid - 1, res = mid;
    }
    return res;
}

int main(){
    scanf("%d", &n);    

    max = binary_search_max(1e9);

    for(int i = 1; i <= n; i++) a[i] = i;
    for(int i = 1; i <= 5; i++) std::random_shuffle(a + 1, a + n + 1);  

    for(int i = 1; i <= Min(n ,chance_cnt); i++){
        printf("? %d\n", a[i]); 
        fflush(stdout);
        scanf("%d", &global_tmp);
        if(global_tmp == max) continue;
        if(d == 0) d = Aabs(max-global_tmp);
        d = gcd(d , Aabs(max-global_tmp));
    }
    fflush(stdout);
    printf("! %d %d\n", max - (n - 1) * d, d);
}

F. Please, another Queries on Array?

这个题目首先得知道$\varphi(n)$的求法

然后就是乘积线段树和或线段树维护一下

就没有然后了

#include <cstdio>

const int N = 4e5 + 1e4;
const long long mod = 1e9 + 7;

int n, q, x, y, z, pcnt;
int a[N];
long long p[310], pri[N], inv[310];
char op[10];

inline long long ksm(long long a, long long p){
    long long res = 1;
    while(p){
        if(p & 1) res = (res * a) % mod;
        a = (a * a) % mod;
        p >>= 1;
    }
    return res;
}

inline void prime(){
    for(int i = 2; i <= 300; i++){
        for(int j = 1; j <= pcnt; j++)
            if(i % p[j] == 0) pri[i] |= pri[ p[j] ];
        if(pri[i] == 0) {p[++pcnt] = i; pri[i] = (1LL << (pcnt - 1LL));}
    }
}

inline void get_inv(){
    for(int i = 1; i <= pcnt; i++) 
        inv[i] = ksm(p[i], mod - 2);
}

// Segment Tree Start
struct node{
    long long val,pri;
    void operator+= (const node &b){
        this -> val = (this -> val * b.val) % mod;
        pri |= b.pri;
    }
}tree[N << 2], lazy[N << 2];

inline void pushup(int now){
    tree[now].val = (tree[now << 1].val * tree[now << 1 | 1].val) % mod;
    tree[now].pri = tree[now << 1].pri | tree[now << 1 | 1].pri;
}

inline void pushdown(int now, int lson, int rson){
    if(lazy[now].pri != 0){
        tree[now << 1].val  =  (1LL * tree[now << 1].val * ksm(lazy[now].val, lson)) % mod;
        tree[now << 1 | 1].val  =  (1LL * tree[now << 1 | 1].val * ksm(lazy[now].val, rson)) % mod;
        tree[now << 1].pri |= lazy[now].pri;
        tree[now << 1 | 1].pri |= lazy[now].pri;
        lazy[now << 1].val = (1LL * lazy[now << 1].val * lazy[now].val) % mod;
        lazy[now << 1 | 1].val = (1LL * lazy[now << 1 | 1].val * lazy[now].val) % mod;
        lazy[now << 1].pri |= lazy[now].pri;
        lazy[now << 1 | 1].pri |= lazy[now].pri;
        lazy[now].val = 1LL; lazy[now].pri = 0;
    }
}


inline void query_mut(int now, int left, int rig, int from, int to, int val){
    if(from <= left && rig <= to){
        tree[now].val = (1LL * tree[now].val * ksm(val, (rig - left + 1LL))) % mod;
        tree[now].pri |= pri[val]; 
        lazy[now].val = (lazy[now].val * val) % mod;
        lazy[now].pri |= pri[val];
        return ;
    }
    int mid = (left + rig) >> 1;
    pushdown(now, mid - left + 1LL, rig - mid);
    if(from <= mid) query_mut(now << 1, left, mid, from, to, val);
    if(to > mid) query_mut(now << 1 | 1, mid + 1, rig, from, to, val);
    pushup(now);
}

inline node query_sum(int now, int left, int rig, int from, int to){
    if(from <= left && rig <= to) return tree[now];
    int mid = (left + rig) >> 1;
    node res = (node){1, 0};
    pushdown(now, mid - left + 1LL, rig - mid);
    if(from <= mid) res += query_sum(now << 1, left, mid, from, to);
    if(to > mid) res += query_sum(now << 1 | 1, mid + 1, rig, from, to);    
    pushup(now);
    return res;
}

inline void build_tree(int now, int left, int rig){
    lazy[now].val = 1; lazy[now].pri = 0;
    if(left == rig){
        scanf("%lld", &tree[now].val);
        tree[now].pri = pri[ tree[now].val ];
        return ;
    }
    int mid = (left + rig) >> 1;
    build_tree(now << 1, left, mid);
    build_tree(now << 1 | 1, mid + 1, rig);
    pushup(now);
}
// Segment Tree End

int main(){
    prime();
    get_inv();
    scanf("%d%d", &n, &q);
    build_tree(1, 1, n);
    for(int i = 1; i <= n; i++) scanf("%d", &a[i]); 
    while(q--){
        scanf("%s", op);    
        if(op[0] == 'M'){
            scanf("%d%d%d", &x, &y, &z);    
            query_mut(1, 1, n, x, y, z);
        }   
        else {
            scanf("%d%d", &x, &y);
            node tmp = query_sum(1, 1, n, x, y);
            for(int i = 1; i <= pcnt; i++){
                if((tmp.pri >> (i - 1LL)) & 1LL)
                    tmp.val = (((tmp.val * (p[i] - 1) ) % mod) * inv[i]) % mod;
            }
            printf("%lld\n", tmp.val);
        }
    }   
}

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Twenty Lectures on Algorithmic Game Theory

Twenty Lectures on Algorithmic Game Theory

Tim Roughgarden / Cambridge University Press / 2016-8-31 / USD 34.99

Computer science and economics have engaged in a lively interaction over the past fifteen years, resulting in the new field of algorithmic game theory. Many problems that are central to modern compute......一起来看看 《Twenty Lectures on Algorithmic Game Theory》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具