Uber 宣布开源 AI 工具箱,免代码训练和测试学习模型

栏目: 软件资讯 · 发布时间: 6年前

Uber 宣布开源 Ludwig ,一个基于 TensorFlow 的 工具 箱,该工具箱特点是不用写代码就能够训练和测试深度学习模型。

Uber 官方表示,对于AI开发者来说,Ludwig 可以帮助他们更好地理解深度学习方面的能力,并能够推进模型快速迭代。另一方面,对于 AI 专家来说,Ludwig 可以简化原型设计和数据处理过程,从而让他们能够专注于开发深度学习模型架构。

Ludwig 提供了一套 AI 架构,可以组合起来,为给定的用例创建端到端的模型。开始模型训练,只需要一个表格数据文件(如 CSV)和一个 YAML 配置文件——用于指定数据文件中哪些列是输入特征,哪些列是输出目标变量。如果指定了多个输出变量,Ludwig 将学会同时预测所有输出。使用 Ludwig 训练模型,在模型定义中可以包含附加信息,比如数据集中每个特征的预处理数据和模型训练参数, 也能够保存下来,可以在日后加载,对新数据进行预测。

Uber 宣布开源 AI 工具箱,免代码训练和测试学习模型

对于 Ludwig 支持的数据类型(文本、图像、类别等),其提供了一个将原始数据映射到张量的编码器,以及将张量映射到原始数据的解码器(张量是线性代数中使用的数据结构)。内置的组合器,能够自动将所有输入编码器的张量组合在一起,对它们进行处理,并将其返回给输入解码器。

Uber 表示,通过组合这些特定于数据类型的组件,用户可以将 Ludwig 用于各种任务。比如,组合文本编码器和类别解码器,就可以获得一个文本分类器。

Uber 宣布开源 AI 工具箱,免代码训练和测试学习模型

每种数据类型有多个编码器和解码器。例如,文本可以用卷积神经网络(CNN),循环神经网络(RNN)或其他编码器编码。用户可以直接在模型定义文件中指定要使用的参数和超参数,而无需编写单行代码。

Ludwig 采用的这种灵活的编码器-解码器架构,即使是经验较少的深度学习开发者,也能够轻松地为不同的任务训练模型。比如文本分类、目标分类、图像字幕、序列标签、回归、语言建模、机器翻译、时间序列预测和问答等等。

此外,Ludwig 还提供了各种工具,且能够使用开源分布式培训框架 Horovod。目前,Ludwig 有用于二进制值,浮点数,类别,离散序列,集合,袋(bag),图像,文本和时间序列的编码器和解码器,并且支持选定的预训练模型。未来将支持更多资料的种类。

参考: Ludwig 介绍ithome量子位


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Algorithms Unlocked

Algorithms Unlocked

Thomas H. Cormen / The MIT Press / 2013-3-1 / USD 25.00

Have you ever wondered how your GPS can find the fastest way to your destination, selecting one route from seemingly countless possibilities in mere seconds? How your credit card account number is pro......一起来看看 《Algorithms Unlocked》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试