内容简介:面向推荐系统的深度学习文献列表
Deep-Learning-for-Recommendation-Systems
This repository contains Deep Learning based Articles , Papers and Repositories for Recommendation Systems.
Papers
-
Convolutional Matrix Factorization for Document Context-Aware Recommendation by Donghyun Kim, Chanyoung Park, Jinoh Oh, Seungyong Lee, Hwanjo Yu, RecSys 2016.
Source: http://dm.postech.ac.kr/~cartopy/ConvMF/ , Code: https://github.com/cartopy/ConvMF -
A Neural Autoregressive Approach to Collaborative Filtering by Yin Zheng et all.
Source: http://proceedings.mlr.press/v48/zheng16.pdf -
Collaborative Recurrent Neural Networks for Dynamic Recommender Systems by Young-Jun Ko. ACML 2016
Source: http://proceedings.mlr.press/v63/ko101.pdf -
Hybrid Recommender System based on Autoencoders by Florian Strub . 2016
Source: https://arxiv.org/pdf/1606.07659.pdf -
Deep content-based music recommendation by Aaron van den Oord.
Source: https://papers.nips.cc/paper/5004-deep-content-based-music-recommendation.pdf -
DeepPlaylist: Using Recurrent Neural Networks to Predict Song Similarity by Anusha Balakrishnan.
Source: https://cs224d.stanford.edu/reports/BalakrishnanDixit.pdf -
Hybrid music recommender using content-based and social information by Paulo Chiliguano .
Source: http://ieeexplore.ieee.org/document/7472151 -
CONTENT-AWARE COLLABORATIVE MUSIC RECOMMENDATION USING PRE-TRAINED NEURAL NETWORKS.
Source: http://ismir2015.uma.es/articles/290_Paper.pdf -
TransNets: Learning to Transform for Recommendation by Rose Catherine.
Source: https://arxiv.org/abs/1704.02298 -
Learning Distributed Representations from Reviews for Collaborative Filtering by Amjad Almahairi.
Source: http://dl.acm.org/citation.cfm?id=2800192 -
Ask the GRU: Multi-task Learning for Deep Text Recommendations by T Bansal.
Source: https://arxiv.org/pdf/1609.02116.pdf -
A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems by Ali Mamdouh Elkahky.
Source: http://sonyis.me/paperpdf/frp1159-songA-www-2015.pdf -
Deep collaborative filtering via marginalized denoising auto-encoder by S Li.
Source: https://pdfs.semanticscholar.org/ff29/2f00055d8221c42d4831679db9d3872b6fbd.pdf -
Joint deep modeling of users and items using reviews for recommendation by L Zheng.
Source: https://arxiv.org/pdf/1701.04783 - Hybrid Collaborative Filtering with Neural Networks by Strub Source: https://pdfs.semanticscholar.org/fcbd/179590c30127cafbd00fd7087b47818406bc.pdf
-
Trust-aware Top-N Recommender Systems with Correlative Denoising Autoencoder by Y Pan.
Source: https://arxiv.org/pdf/1703.01760 -
Neural Semantic Personalized Ranking for item cold-start recommendation by T Ebesu .
Source: http://www.cse.scu.edu/~yfang/NSPR.pdf -
Representation Learning of Users and Items for Review Rating Prediction Using Attention-based Convolutional Neural Network by S Seo.
Source: http://mlrec.org/2017/papers/paper8.pdf -
Collaborative Denoising Auto-Encoders for Top-N Recommender Systems by Y Wu.
Source: http://alicezheng.org/papers/wsdm16-cdae.pdf -
Deep Neural Networks for YouTube Recommendations by Paul Covington.
Source: https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45530.pdf - Wide & Deep Learning for Recommender Systems by Heng-Tze Cheng. Source: https://arxiv.org/abs/1606.07792
- A Survey and Critique of Deep Learning on Recommender Systems by Lei Zheng Source: http://bdsc.lab.uic.edu/docs/survey-critique-deep.pdf
Blogs
-
Deep Learning Meets Recommendation Systems by Wann-Jiun.
Source: https://blog.nycdatascience.com/student-works/deep-learning-meets-recommendation-systems/
Workshops
-
2nd Workshop on Deep Learning for Recommender Systems , 27 August 2017. Como, Italy.
Source: http://dlrs-workshop.org
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- Web Worker 文献综述
- 参考近百篇文献,“图像着色” 最全综述
- 项目开发解决方案及参考文献
- Zotero 5.0.75 发布,文献管理工具
- Zotero 5.0.85 发布,参考文献管理工具
- Zotero 5.0.86 发布,参考文献管理工具
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
计算机网络(第5版)
Andrew S. Tanenbaum、David J. Wetherall / 严伟、潘爱民 / 清华大学出版社 / 2012-3-1 / 89.50元
本书是国内外使用最广泛、最权威的计算机网络经典教材。全书按照网络协议模型自下而上(物理层、数据链路层、介质访问控制层、网络层、传输层和应用层)有系统地介绍了计算机网络的基本原理,并结合Internet给出了大量的协议实例。在讲述网络各层次内容的同时,还与时俱进地引入了最新的网络技术,包括无线网络、3G蜂窝网络、RFID与传感器网络、内容分发与P2P网络、流媒体传输与IP语音,以及延迟容忍网络等。另......一起来看看 《计算机网络(第5版)》 这本书的介绍吧!