内容简介:面向推荐系统的深度学习文献列表
Deep-Learning-for-Recommendation-Systems
This repository contains Deep Learning based Articles , Papers and Repositories for Recommendation Systems.
Papers
-
Convolutional Matrix Factorization for Document Context-Aware Recommendation by Donghyun Kim, Chanyoung Park, Jinoh Oh, Seungyong Lee, Hwanjo Yu, RecSys 2016.
Source: http://dm.postech.ac.kr/~cartopy/ConvMF/ , Code: https://github.com/cartopy/ConvMF -
A Neural Autoregressive Approach to Collaborative Filtering by Yin Zheng et all.
Source: http://proceedings.mlr.press/v48/zheng16.pdf -
Collaborative Recurrent Neural Networks for Dynamic Recommender Systems by Young-Jun Ko. ACML 2016
Source: http://proceedings.mlr.press/v63/ko101.pdf -
Hybrid Recommender System based on Autoencoders by Florian Strub . 2016
Source: https://arxiv.org/pdf/1606.07659.pdf -
Deep content-based music recommendation by Aaron van den Oord.
Source: https://papers.nips.cc/paper/5004-deep-content-based-music-recommendation.pdf -
DeepPlaylist: Using Recurrent Neural Networks to Predict Song Similarity by Anusha Balakrishnan.
Source: https://cs224d.stanford.edu/reports/BalakrishnanDixit.pdf -
Hybrid music recommender using content-based and social information by Paulo Chiliguano .
Source: http://ieeexplore.ieee.org/document/7472151 -
CONTENT-AWARE COLLABORATIVE MUSIC RECOMMENDATION USING PRE-TRAINED NEURAL NETWORKS.
Source: http://ismir2015.uma.es/articles/290_Paper.pdf -
TransNets: Learning to Transform for Recommendation by Rose Catherine.
Source: https://arxiv.org/abs/1704.02298 -
Learning Distributed Representations from Reviews for Collaborative Filtering by Amjad Almahairi.
Source: http://dl.acm.org/citation.cfm?id=2800192 -
Ask the GRU: Multi-task Learning for Deep Text Recommendations by T Bansal.
Source: https://arxiv.org/pdf/1609.02116.pdf -
A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems by Ali Mamdouh Elkahky.
Source: http://sonyis.me/paperpdf/frp1159-songA-www-2015.pdf -
Deep collaborative filtering via marginalized denoising auto-encoder by S Li.
Source: https://pdfs.semanticscholar.org/ff29/2f00055d8221c42d4831679db9d3872b6fbd.pdf -
Joint deep modeling of users and items using reviews for recommendation by L Zheng.
Source: https://arxiv.org/pdf/1701.04783 - Hybrid Collaborative Filtering with Neural Networks by Strub Source: https://pdfs.semanticscholar.org/fcbd/179590c30127cafbd00fd7087b47818406bc.pdf
-
Trust-aware Top-N Recommender Systems with Correlative Denoising Autoencoder by Y Pan.
Source: https://arxiv.org/pdf/1703.01760 -
Neural Semantic Personalized Ranking for item cold-start recommendation by T Ebesu .
Source: http://www.cse.scu.edu/~yfang/NSPR.pdf -
Representation Learning of Users and Items for Review Rating Prediction Using Attention-based Convolutional Neural Network by S Seo.
Source: http://mlrec.org/2017/papers/paper8.pdf -
Collaborative Denoising Auto-Encoders for Top-N Recommender Systems by Y Wu.
Source: http://alicezheng.org/papers/wsdm16-cdae.pdf -
Deep Neural Networks for YouTube Recommendations by Paul Covington.
Source: https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45530.pdf - Wide & Deep Learning for Recommender Systems by Heng-Tze Cheng. Source: https://arxiv.org/abs/1606.07792
- A Survey and Critique of Deep Learning on Recommender Systems by Lei Zheng Source: http://bdsc.lab.uic.edu/docs/survey-critique-deep.pdf
Blogs
-
Deep Learning Meets Recommendation Systems by Wann-Jiun.
Source: https://blog.nycdatascience.com/student-works/deep-learning-meets-recommendation-systems/
Workshops
-
2nd Workshop on Deep Learning for Recommender Systems , 27 August 2017. Como, Italy.
Source: http://dlrs-workshop.org
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- Web Worker 文献综述
- 参考近百篇文献,“图像着色” 最全综述
- 项目开发解决方案及参考文献
- Zotero 5.0.75 发布,文献管理工具
- Zotero 5.0.85 发布,参考文献管理工具
- Zotero 5.0.86 发布,参考文献管理工具
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
技术领导之路(中英文对照)
Gerald M.Weinberg / 余晟 / 电子工业出版社 / 2009-12 / 69.00元
《技术领导之路:全面解决问题的途径(中英文对照)》内容简介:搞定技术问题并不简单,但与人打交到也并非易事。作为一个技术专家,你是否在走上管理岗位时遇到了各种不适“症状”?《技术领导之路:解决问题的有机方法》一书将帮助你成为一个成功的解决问题的领导者。书中温伯格从一个反思者的角度阐述了要成为一个成功的解决问题的领导者必备的3个技能——MOI,即激励(Motivation)、组织(Organizati......一起来看看 《技术领导之路(中英文对照)》 这本书的介绍吧!