机器学习算法 攻克难疾的新救星

栏目: 数据库 · 发布时间: 5年前

内容简介:近日,由剑桥大学领导的研究人员设计了一种研究人员使用他们的算法来识别新的分子,激活了一种被认为与阿尔茨海默病和精神分裂症相关的蛋白质。

近日,由剑桥大学领导的研究人员设计了一种 用于药物发现的机器学习算法 ,该算法的效率是工业标准的两倍,可以加快开发新的疾病治疗方法的进程。

机器学习算法 攻克难疾的新救星

研究人员使用他们的算法来识别新的分子,激活了一种被认为与阿尔茨海默病和精神分裂症相关的蛋白质。

药物发现的一个关键问题是预测一个分子是否会激活特定的生理过程。所以研究人员会构建一个统计模型寻找已知的激活过程的分子之间的化学模式,但是建立这些模型的数据是有限的,因为实验成本很高,并且不清楚哪种化学模式在统计上是有意义的。

剑桥卡文迪什实验室的阿尔法·李博士认为机器学习在计算机视觉等数据丰富的领域取得了重大进展,下一个前沿领域就是科学应用,例如药物发现。虽然研究人员对这个问题有着物理上的洞察力,但最大的问题是如何将数据与基础化学和物理学结合起来。

该算法由Lee和他的同事与生物制药公司辉瑞合作开发,利用数学将与药物相关的化学模式分离出来。重要的是,该算法研究已知活性分子和已知不活跃的分子,并识别分子中哪些部分对药物作用很重要,哪些部分不重要。

一种被称为“数学原理”的随机矩阵理论给出了数据集,然后将其与活性和非活性分子的化学特征的统计数据进行比较,得出哪些化学模式对结合是重要的,而不是产生于偶然。活性分子还能计算出另外六百万个分子。研究人员购买并筛选了100个最相关的分子。由此,他们发现了四个激活CHRM 1受体的新分子,这是一种可能与阿尔茨海默病和精神分裂症相关的蛋白质。

从六百万分子中提取出四个活性分子,就像在干草堆中找到一根针,但是利用机器学习算法,事情会变得容易很多。

剑桥大学的研究人员目前正在开发算法,来预测合成复杂有机分子的方法,以及扩展机器学习的新算法。这项研究得到了温顿可持续性物理方案的支持。

微信公众号搜索"驱动之家"加关注,每日最新的手机、电脑、汽车、智能硬件信息可以让你一手全掌握。推荐关注!【微信扫描下图可直接关注

机器学习算法 攻克难疾的新救星


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

莱昂氏UNIX源代码分析

莱昂氏UNIX源代码分析

(澳)John Lions / 尤晋元 / 机械工业出版社 / 2000-7-1 / 49.00

本书由上、下两篇组成。上篇为UNIX版本6的源代码,下篇是莱昂先生对UNIX操作系统版本6源代码的详细分析。本书语言简洁、透彻,曾作为未公开出版物广泛流传了二十多年,是一部杰出经典之作。本书适合UNIX操作系统编程人员、大专院校师生学习参考使用。一起来看看 《莱昂氏UNIX源代码分析》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具