斯坦福大学发布 StanfordNLP,支持多种语言

栏目: Python · 发布时间: 5年前

内容简介:雷锋网 AI 科技评论按,近日,斯坦福大学发布了一款用于 NLP 的 Python 官方库,这个库可以适用于多种语言,其地址是:这是 Stanford 官方发布的 NLP 库,详细信息请访问:

雷锋网 AI 科技评论按,近日,斯坦福大学发布了一款用于 NLP 的 Python 官方库,这个库可以适用于多种语言,其地址是: https://stanfordnlp.github.io/stanfordnlp/ ,github 资源如下:

斯坦福大学发布 StanfordNLP,支持多种语言

这是 Stanford 官方发布的 NLP 库,详细信息请访问: https://stanfordnlp.github.io/stanfordnlp/

说明

如果在研究中使用了他们的神经管道,可以参考他们的 CoNLL 2018 共享任务系统描述文件:

@inproceedings{qi2018universal,

address = {Brussels, Belgium},

author = {Qi, Peng and Dozat, Timothy and Zhang, Yuhao and Manning, Christopher D.},

booktitle = {Proceedings of the {CoNLL} 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies},

month = {October},

pages = {160--170},

publisher = {Association for Computational Linguistics},

title = {Universal Dependency Parsing from Scratch},

url = { https://nlp.stanford.edu/pubs/qi2018universal.pdf},

year = {2018}

}

但是,这个版本和 Stanford 大学的 CoNLL 2018 共享任务系统不一样。在这里,标记解析器、词性还原器、形态学特性和多词术语系统是共享任务代码系统的一个简洁版本,但是作为对比,还使用了 Tim Dozat 的 Tensorflow 版本的标记器和解析器。PyTorch 中大体上对这个版本的代码进行了复制,尽管与原始版本有一些不同。 雷锋网

启动

StanfordNLP 支持 Python3.6 及其以上版本。最好的办法是从 PyPI 安装 StanfordNLP,如果已经安装了 pip,那么只需要运行:

pip install stanfordnlp

这也有助于解决 StanfordNLP 的所有依赖,例如对 PyTorch 1.0.0 或者更高版本的依赖。

还有一个办法,是从 github 存储库的源代码安装,这可以使基于 StanfordNLP 的开发和模型训练具有更大的灵活性。 雷锋网 (公众号:雷锋网)

git clone git@github.com:stanfordnlp/stanfordnlp.git
cd stanfordnlp
pip install -e .

运行 StanfordNLP

从神经管道开始

要运行第一个 StanfordNLP 管道,只需在 python 交互式解释器中执行以下步骤:

>>> import stanfordnlp
>>> stanfordnlp.download('en') # This downloads the English models for the neural pipeline
>>> nlp = stanfordnlp.Pipeline() # This sets up a default neural pipeline in English
>>> doc = nlp("Barack Obama was born in Hawaii. He was elected president in 2008.")
>>> doc.sentences[0].print_dependencies()

最后一个命令将打印输入字符串(或文档,如 StanfordNLP 所示)中第一个句子中的单词,以及该句子中单词的索引,以及单词之间的依赖关系。输出应如下所示:

('Barack', '4', 'nsubj:pass')
('Obama', '1', 'flat')
('was', '4', 'aux:pass')
('born', '0', 'root')
('in', '6', 'case')
('Hawaii', '4', 'obl')
('.', '4', 'punct')

访问 Java Stanford CoreNLP 服务器

除了神经管道之外,这个项目还包括一个用 Python 代码访问 Java Stanford CaleNLP 服务器的官方类。

有几个初始设置步骤:

  • 下载 Stanford CoreNLP 和需要使用的语言的模型;

  • 将模型原型放在分发文件夹中;

  • 告诉 python 代码 Stanford CoreNLP 的位置:export corenlp_home=/path/to/stanford-corenlp-full-2018-10-05

我们提供了另一个 演示脚本 ,演示如何使用 corenlp 客户机并从中提取各种注释。

神经管道训练模型

目前,CoNLL 2018 共享任务中的所有 treebanks 模型都是公开的,下载和使用这些模型的说明: https://stanfordnlp.github.io/stanfordnlp/installation_download.html#models-for-human-languages

训练你自己的神经管道

这个库中的所有神经模块都可以使用自己的 CoNLL-U 格式数据进行训练。目前,并不支持通过管道接口进行模型训练。因此,如果要训练你自己的模型,你需要克隆这个 git 存储库并从源代码进行设置。

via: https://github.com/stanfordnlp/stanfordnlp

雷锋网版权文章,未经授权禁止转载。详情见 转载须知


以上所述就是小编给大家介绍的《斯坦福大学发布 StanfordNLP,支持多种语言》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Java解惑

Java解惑

布洛赫、加夫特 / 陈昊鹏 / 人民邮电出版社 / 2006-1 / 39.00元

本书特写了95个有关Java或其类库的陷阱和缺陷的谜题,其中大多数谜题都采用了短程序的方式,这些程序的行为与其看似的大相径庭。在每个谜题之后都给出了详细的解惑方案,这些解惑方案超越了对程序行为的简单解释,向读者展示了如何一劳永逸地避免底层的陷阱与缺陷。 本书趣味十足、寓教于乐,适合于具备Java知识的学习者和有编程经验的Java程序员。一起来看看 《Java解惑》 这本书的介绍吧!

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具