感知器:神经网络的主要部分

栏目: 编程工具 · 发布时间: 7年前

内容简介:感知器:神经网络的主要部分

作者:Roberto Lopez

神经网络是人工智能中最热门的话题之一,它是基于大脑结构的计算模型,是信息加工结构,具有从数据中进行学习的能力。神经网络有许多类型,最重要的是多层感知器,其中最典型的神经元模型称为感知器,本文中我们将从数学角度解读这个模型。

感知器:神经网络的主要部分

感知器组成

神经网络最主要的组成是神经元,感知器是最常用的模型。以下为感知器图解:

感知器:神经网络的主要部分 感知器:神经网络的主要部分

神经元参数

感知器:神经网络的主要部分

组合函数

感知器:神经网络的主要部分

激活函数

激活函数根据组合值产生输出。实际应用涉及到很多有用的激活函数,三种最常用的是逻辑函数、双曲正切函数和线性函数,其他不可导的函数(如阈值函数)这里暂且不提。

逻辑函数形状为s型,单调递增,平衡在线性和非线性之间,值域为(0,1),对于分类应用是很好的性质,因为输出可以根据概率被解释。

感知器:神经网络的主要部分

双曲正切函数也是在神经网络领域中常用的一个s型函数,类似逻辑函数。主要的不同点是值域 (-1,1) ,在近似应用中很实用。

感知器:神经网络的主要部分

线性激活函数的神经元的输出等于其组合值,在近似应用中也很实用。

感知器:神经网络的主要部分

组合值 c=1.55 ,因为选择的是双曲正切函数,该神经元的激活结果为

感知器:神经网络的主要部分

输出函数

输出计算在感知器中最为重要。给定一系列输入信号,计算出输出信号。以下为信息在感知器中的处理流程:

感知器:神经网络的主要部分

神经元由输入到输出的最终表现为:

感知器:神经网络的主要部分

可见,输出函数合并了组合值和激活函数。

结论

神经元是生物神经系统中单个神经元行为的数学模型。单个的神经元可以解决很多简单的学习任务,但是当它们在网络结构中相互连接时,会显现出神经网络的能力。人工神经网络的结构与神经元的数量及其之间的连接有关。下图为前馈神经网络结构。

感知器:神经网络的主要部分

虽然这幅图展示了感知器的运行方式,但仍然有其他不同特征的神经元模型用于不同目的,其中有规模神经元、主成分神经元、非规模神经元、概率神经元。上图中,规模神经元为黄色,非规模神经元为红色。

感知器:神经网络的主要部分


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

马云:未来已来

马云:未来已来

阿里巴巴集团 / 红旗出版社 / 2017-4-1 / CNY 49.00

阿里巴巴集团:全球主要的互联网公司之一,由马云带领其他17个创始人,于1999年在中国杭州创立。阿里巴巴集团经营多元化的互联网业务,以“让天下没有难做的生意”为使命,致力于为创业者和消费者提供全球化的商业平台,打造开放、协同、繁荣的电子商务生态系统。自成立以来,阿里巴巴集团建立了领先的消费者电子商务、网上支付、B2B网上交易市场及云计算业务,并积极开拓无线应用、手机操作系统和互联网电视等领域。一起来看看 《马云:未来已来》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具