聊聊flink的CsvTableSink

栏目: 编程工具 · 发布时间: 5年前

内容简介:本文主要研究一下flink的CsvTableSinkflink-table_2.11-1.7.1-sources.jar!/org/apache/flink/table/sinks/TableSink.scalaflink-table_2.11-1.7.1-sources.jar!/org/apache/flink/table/sinks/BatchTableSink.scala

本文主要研究一下flink的CsvTableSink

TableSink

flink-table_2.11-1.7.1-sources.jar!/org/apache/flink/table/sinks/TableSink.scala

trait TableSink[T] {

  /**
    * Returns the type expected by this [[TableSink]].
    *
    * This type should depend on the types returned by [[getFieldNames]].
    *
    * @return The type expected by this [[TableSink]].
    */
  def getOutputType: TypeInformation[T]

  /** Returns the names of the table fields. */
  def getFieldNames: Array[String]

  /** Returns the types of the table fields. */
  def getFieldTypes: Array[TypeInformation[_]]

  /**
    * Return a copy of this [[TableSink]] configured with the field names and types of the
    * [[Table]] to emit.
    *
    * @param fieldNames The field names of the table to emit.
    * @param fieldTypes The field types of the table to emit.
    * @return A copy of this [[TableSink]] configured with the field names and types of the
    *         [[Table]] to emit.
    */
  def configure(fieldNames: Array[String],
                fieldTypes: Array[TypeInformation[_]]): TableSink[T]
}
  • TableSink定义了getOutputType、getFieldNames、getFieldTypes、configure三个方法

BatchTableSink

flink-table_2.11-1.7.1-sources.jar!/org/apache/flink/table/sinks/BatchTableSink.scala

trait BatchTableSink[T] extends TableSink[T] {

  /** Emits the DataSet. */
  def emitDataSet(dataSet: DataSet[T]): Unit
}
  • BatchTableSink继承了TableSink,定义了emitDataSet方法

StreamTableSink

flink-table_2.11-1.7.1-sources.jar!/org/apache/flink/table/sinks/StreamTableSink.scala

trait StreamTableSink[T] extends TableSink[T] {

  /** Emits the DataStream. */
  def emitDataStream(dataStream: DataStream[T]): Unit

}
  • StreamTableSink继承了TableSink,定义了emitDataStream方法

TableSinkBase

flink-table_2.11-1.7.1-sources.jar!/org/apache/flink/table/sinks/TableSinkBase.scala

trait TableSinkBase[T] extends TableSink[T] {

  private var fieldNames: Option[Array[String]] = None
  private var fieldTypes: Option[Array[TypeInformation[_]]] = None

  /** Return a deep copy of the [[TableSink]]. */
  protected def copy: TableSinkBase[T]

  /**
    * Return the field names of the [[Table]] to emit. */
  def getFieldNames: Array[String] = {
    fieldNames match {
      case Some(n) => n
      case None => throw new IllegalStateException(
        "TableSink must be configured to retrieve field names.")
    }
  }

  /** Return the field types of the [[Table]] to emit. */
  def getFieldTypes: Array[TypeInformation[_]] = {
    fieldTypes match {
      case Some(t) => t
      case None => throw new IllegalStateException(
        "TableSink must be configured to retrieve field types.")
    }
  }

  /**
    * Return a copy of this [[TableSink]] configured with the field names and types of the
    * [[Table]] to emit.
    *
    * @param fieldNames The field names of the table to emit.
    * @param fieldTypes The field types of the table to emit.
    * @return A copy of this [[TableSink]] configured with the field names and types of the
    *         [[Table]] to emit.
    */
  final def configure(fieldNames: Array[String],
                      fieldTypes: Array[TypeInformation[_]]): TableSink[T] = {

    val configuredSink = this.copy
    configuredSink.fieldNames = Some(fieldNames)
    configuredSink.fieldTypes = Some(fieldTypes)

    configuredSink
  }
}
  • TableSinkBase继承了TableSink,它实现了getFieldNames、getFieldTypes、configure方法

CsvTableSink

flink-table_2.11-1.7.1-sources.jar!/org/apache/flink/table/sinks/CsvTableSink.scala

class CsvTableSink(
    path: String,
    fieldDelim: Option[String],
    numFiles: Option[Int],
    writeMode: Option[WriteMode])
  extends TableSinkBase[Row] with BatchTableSink[Row] with AppendStreamTableSink[Row] {

  /**
    * A simple [[TableSink]] to emit data as CSV files.
    *
    * @param path The output path to write the Table to.
    * @param fieldDelim The field delimiter, ',' by default.
    */
  def this(path: String, fieldDelim: String = ",") {
    this(path, Some(fieldDelim), None, None)
  }

  /**
    * A simple [[TableSink]] to emit data as CSV files.
    *
    * @param path The output path to write the Table to.
    * @param fieldDelim The field delimiter.
    * @param numFiles The number of files to write to.
    * @param writeMode The write mode to specify whether existing files are overwritten or not.
    */
  def this(path: String, fieldDelim: String, numFiles: Int, writeMode: WriteMode) {
    this(path, Some(fieldDelim), Some(numFiles), Some(writeMode))
  }

  override def emitDataSet(dataSet: DataSet[Row]): Unit = {
    val csvRows = dataSet.map(new CsvFormatter(fieldDelim.getOrElse(",")))

    if (numFiles.isDefined) {
      csvRows.setParallelism(numFiles.get)
    }

    val sink = writeMode match {
      case None => csvRows.writeAsText(path)
      case Some(wm) => csvRows.writeAsText(path, wm)
    }

    if (numFiles.isDefined) {
      sink.setParallelism(numFiles.get)
    }

    sink.name(TableConnectorUtil.generateRuntimeName(this.getClass, getFieldNames))
  }

  override def emitDataStream(dataStream: DataStream[Row]): Unit = {
    val csvRows = dataStream.map(new CsvFormatter(fieldDelim.getOrElse(",")))

    if (numFiles.isDefined) {
      csvRows.setParallelism(numFiles.get)
    }

    val sink = writeMode match {
      case None => csvRows.writeAsText(path)
      case Some(wm) => csvRows.writeAsText(path, wm)
    }

    if (numFiles.isDefined) {
      sink.setParallelism(numFiles.get)
    }

    sink.name(TableConnectorUtil.generateRuntimeName(this.getClass, getFieldNames))
  }

  override protected def copy: TableSinkBase[Row] = {
    new CsvTableSink(path, fieldDelim, numFiles, writeMode)
  }

  override def getOutputType: TypeInformation[Row] = {
    new RowTypeInfo(getFieldTypes: _*)
  }
}

/**
  * Formats a [[Row]] into a [[String]] with fields separated by the field delimiter.
  *
  * @param fieldDelim The field delimiter.
  */
class CsvFormatter(fieldDelim: String) extends MapFunction[Row, String] {
  override def map(row: Row): String = {

    val builder = new StringBuilder

    // write first value
    val v = row.getField(0)
    if (v != null) {
      builder.append(v.toString)
    }

    // write following values
    for (i <- 1 until row.getArity) {
      builder.append(fieldDelim)
      val v = row.getField(i)
      if (v != null) {
        builder.append(v.toString)
      }
    }
    builder.mkString
  }
}

/**
  * Formats a [[Row]] into a [[String]] with fields separated by the field delimiter.
  *
  * @param fieldDelim The field delimiter.
  */
class CsvFormatter(fieldDelim: String) extends MapFunction[Row, String] {
  override def map(row: Row): String = {

    val builder = new StringBuilder

    // write first value
    val v = row.getField(0)
    if (v != null) {
      builder.append(v.toString)
    }

    // write following values
    for (i <- 1 until row.getArity) {
      builder.append(fieldDelim)
      val v = row.getField(i)
      if (v != null) {
        builder.append(v.toString)
      }
    }
    builder.mkString
  }
}
  • CsvTableSink继承了TableSinkBase,实现了BatchTableSink及AppendStreamTableSink接口,而AppendStreamTableSink则继承了StreamTableSink
  • emitDataSet及emitDataStream都使用了CsvFormatter,它是一个MapFunction,将Row类型转换为String
  • CsvTableSink有一个名为writeMode的可选参数,WriteMode是一个枚举,它有NO_OVERWRITE及OVERWRITE两个枚举值,用于写csv文件时指定是否要覆盖已有的同名文件

小结

  • TableSink定义了getOutputType、getFieldNames、getFieldTypes、configure三个方法;BatchTableSink继承了TableSink,定义了emitDataSet方法;StreamTableSink继承了TableSink,定义了emitDataStream方法;TableSinkBase继承了TableSink,它实现了getFieldNames、getFieldTypes、configure方法
  • CsvTableSink继承了TableSinkBase,实现了BatchTableSink及AppendStreamTableSink接口,而AppendStreamTableSink则继承了StreamTableSink;emitDataSet及emitDataStream都使用了CsvFormatter,它是一个MapFunction,将Row类型转换为String
  • CsvTableSink有一个名为writeMode的可选参数,WriteMode是一个枚举,它有NO_OVERWRITE及OVERWRITE两个枚举值,用于写csv文件时指定是否要覆盖已有的同名文件

doc


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

机器学习算法原理与编程实践

机器学习算法原理与编程实践

郑捷 / 电子工业出版社 / 2015-11 / 88.00

本书是机器学习原理和算法编码实现的基础性读物,内容分为两大主线:单个算法的原理讲解和机器学习理论的发展变迁。算法除包含传统的分类、聚类、预测等常用算法之外,还新增了深度学习、贝叶斯网、隐马尔科夫模型等内容。对于每个算法,均包括提出问题、解决策略、数学推导、编码实现、结果评估几部分。数学推导力图做到由浅入深,深入浅出。结构上数学原理与程序代码一一对照,有助于降低学习门槛,加深公式的理解,起到推广和扩......一起来看看 《机器学习算法原理与编程实践》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具