:balloon:
:tada:
Deep Learning Drizzle :confetti_ball:
:balloon:
Contents
-
Deep Learning (Deep Neural Networks)
:arrow_heading_down: -
Machine Learning Fundamentals
:arrow_heading_down: -
Optimization for Machine Learning
:arrow_heading_down: -
General Machine Learning
:arrow_heading_down: -
Reinforcement Learning
:arrow_heading_down: -
Probabilistic Graphical Models
:arrow_heading_down: -
Natural Language Processing
:arrow_heading_down: -
Automatic Speech Recognition
:arrow_heading_down: -
Modern Computer Vision
:arrow_heading_down: -
Boot Camps or Summer Schools
:arrow_heading_down: -
Bird's Eye view of Artificial (General) Intelligence
:arrow_heading_down:
:tada:
Deep Learning :confetti_ball:
:balloon:
S.No | Course Name | University/Instructor(s) | Course WebPage | Lecture Videos | Year |
---|---|---|---|---|---|
1. | Neural Networks for Machine Learning | Geoffrey Hinton, University of Toronto | Lecture-Slides CSC321-tijmen | YouTube-Lectures UofT-mirror | 2012 2014 |
2. | Neural Networks Demystified | Stephen Welch, Welch Labs | Supplementary Code | YouTube-Lectures | 2014 |
3. | Deep Learning at Oxford | Nando de Freitas, Oxford University | Oxford-ML | YouTube-Lectures | 2015 |
4. | CS231n: CNNs for Visual Recognition | Andrej Karpathy, Stanford University | CS231n |
None
|
2015 |
5. | CS231n: CNNs for Visual Recognition | Andrej Karpathy, Stanford University | CS231n | YouTube-Lectures | 2016 |
6. | CS231n: CNNs for Visual Recognition | Justin Johnson, Stanford University | CS231n | YouTube-Lectures | 2017 |
7. | CS224d: Deep Learning for NLP | Richard Socher, Stanford University | CS224d | YouTube-Lectures | 2015 |
8. | CS224d: Deep Learning for NLP | Richard Socher, Stanford University | CS224d | YouTube-Lectures | 2016 |
9. | CS224n: NLP with Deep Learning | Richard Socher, Stanford University | CS224n | YouTube-Lectures | 2017 |
10. | Neural Networks | Hugo Larochelle, Université de Sherbrooke | Neural-Networks | YouTube-Lectures | 2016 |
11. | Deep Learning | Andrew Ng, Stanford University | CS230 |
None
|
2018 |
12. | Bay Area Deep Learning | Many legends, Stanford |
None
|
YouTube-Lectures | 2016 |
13. | UvA Deep Learning | Efstratios Gavves, University of Amsterdam(UvA) | UvA-DLC | Lecture-Videos | 2018 |
14. | Advanced Deep Learning and Reinforcement Learning | Many legends, DeepMind |
None
|
YouTube-Lectures | 2018 |
15. | Deep Learning | Francois Fleuret, EPFL | EE-59 |
None
|
2019 |
16. | Deep Learning | Francois Fleuret, EPFL | EE-59 | Video-Lectures | 2018 |
17. | Deep Learning for Perception | Dhruv Batra, Virginia Tech | ECE-6504 | YouTube-Lectures | 2015 |
18. | Introduction to Deep Learning | Alexander Amini, Harini Suresh, MIT | 6.S191 | YouTube-Lectures | 2018 |
19. | Deep Learning for Self-Driving Cars | Lex Fridman, MIT | 6.S094 | YouTube-Lectures | 2017-2018 |
20. | MIT Deep Learning | Many Researchers, Lex Fridman, MIT | 6.S094, 6.S091, 6.S093 | YouTube-Lectures | 2019 |
21. | Introduction to Deep Learning | Biksha Raj and many others, CMU | 11-485/785 | YouTube-Lectures | S2018 |
22. | Introduction to Deep Learning | Biksha Raj and others, CMU | 11-485/785 | YouTube-Lectures Recitation-Inclusive | F2018 |
23. | Deep Learning Specialization | Andrew Ng, Stanford | DeepLearning.AI | YouTube-Lectures | 2017-2018 |
24. | Deep Learning | Ali Ghodsi, University of Waterloo | STAT-946 | YouTube-Lectures | F2015 |
25. | Deep Learning | Ali Ghodsi, University of Waterloo | STAT-946 | YouTube-Lectures | F2017 |
26. | Deep Learning | Mitesh Khapra, IIT-Madras | CS7015 | YouTube-Lectures | 2018 |
27. | Deep Learning for AI | UPC Barcelona | DLAI-2017 DLAI-2018 | YouTube-Lectures | 2017-2018 |
-2. | Deep Learning Book companion videos | Ian Goodfellow and others | DL-book slides | YouTube-Lectures | 2017 |
-1. | Neural Networks | Grant Sanderson |
None
|
YouTube-Lectures | 2017-2018 |
Go to Contents
:cupid:
Machine Learning Fundamentals :cyclone:
:boom:
S.No | Course Name | University/Instructor(s) | Course Webpage | Video Lectures | Year |
---|---|---|---|---|---|
1. | Linear Algebra | Gilbert Strang, MIT | 18.06 SC | YouTube-Lectures | 2011 |
2. | Linear Algebra: An in-depth Introduction | Pavel Grinfeld |
None
|
Part-1 Part-2 Part-3 Part-4 | 2015- 2017 |
3. | Essence of Linear Algebra | Grant Sanderson |
None
|
YouTube-Lectures | 2016 |
4. | Essence of Calculus | Grant Sanderson |
None
|
YouTube-Lectures | 2017-2018 |
5. | Mathematics for Machine Learning (Linear Algebra, Calculus) | David Dye, Samuel Cooper, and Freddie Page, IC-London | MML | YouTube-Lectures | 2018 |
6. | Machine Learning Fundamentals | Sanjoy Dasgupta, UC-San Diego | MLF-slides | YouTube-Lectures | 2018 |
Go to Contents
:cupid:
Optimization for Machine Learning :cyclone:
:boom:
S.No | Course Name | University/Instructor(s) | Course Webpage | Video Lectures | Year |
---|---|---|---|---|---|
1. | Optimization for Machine Learning | S V N Vishwanathan, Purdue University |
None
|
YouTube-Lectures | 2011 |
2. | Optimization | Geoff Gordon & Ryan Tibshirani, CMU | 10-725 | YouTube-Lectures | 2012 |
3. | Convex Optimization | Ryan Tibshirani, CMU | cvx-opt | YouTube-Lectures | F2018 |
4. | Convex Optimization | Stephen Boyd, Stanford University | ee364a | YouTube-Lectures | 2008 |
5. | Modern Algorithmic Optimization | Yurii Nesterov, UCLouvain |
None
|
YouTube-Lectures | 2018 |
Go to Contents
:cupid:
General Machine Learning :cyclone:
:boom:
S.No | Course Name | University/Instructor(s) | Course Webpage | Video Lectures | Year |
---|---|---|---|---|---|
1. | CS229: Machine Learning | Andrew Ng, Stanford University | CS229-old CS229-new | YouTube-Lectures | 2007 |
2. | Machine Learning and Data Mining | Nando de Freitas, University of British Columbia | CPSC-340 | YouTube-Lectures | 2012 |
3. | Learning from Data | Yaser Abu-Mostafa, CalTech | CS156 | YouTube-Lectures | 2012 |
4. | Machine Learning | Rudolph Triebel, TUM | Machine Learning | YouTube-Lectures | 2013 |
5. | Pattern Recognition | Sukhendu Das, IIT-M and C.A. Murthy, ISI-Calcutta | PR-NPTEL | YouTube-Lectures | 2014 |
6. | Introduction to Machine Learning | Katie Malone, Sebastian Thrun, Udacity | ML-Udacity | YouTube-Lectures | 2015 |
7. | Introduction to Machine Learning | Dhruv Batra, Virginia Tech | ECE-5984 | YouTube-Lectures | 2015 |
8. | Statistical Learning - Classification | Ali Ghodsi, University of Waterloo | STAT-441 | YouTube-Lectures | 2015 |
9 | Machine Learning Theory | Shai Ben-David, University of Waterloo |
None
|
YouTube-Lectures | 2015 |
10. | Introduction to Machine Learning | Alex Smola, CMU | 10-701 | YouTube-Lectures | S2015 |
11. | ML: Supervised Learning | Michael Littman, Charles Isbell, Pushkar Kolhe, GaTech | ML-Udacity | YouTube-Lectures | 2015 |
12. | ML: Unsupervised Learning | Michael Littman, Charles Isbell, Pushkar Kolhe, GaTech | ML-Udacity | YouTube-Lectures | 2015 |
13. | Statistical Machine Learning | Larry Wasserman, CMU |
None
|
YouTube-Lectures | S2016 |
14. | Statistical Learning - Classification | Ali Ghodsi, University of Waterloo |
None
|
YouTube-Lectures | 2017 |
15. | Machine Learning | Andrew Ng, Stanford University | Coursera-ML | YouTube-Lectures | 2017 |
16. | Statistical Machine Learning | Ryan Tibshirani, Larry Wasserman, CMU | 10-702 | YouTube-Lectures | S2017 |
17. | Machine Learning for Intelligent Systems | Kilian Weinberger, Cornell University | CS4780 | YouTube-Lectures | F2018 |
18. | Statistical Learning Theory and Applications | Tomaso Poggio, Lorenzo Rosasco, Sasha Rakhlin | 9.520/6.860 | YouTube-Lectures | F2018 |
19. | Machine Learning and Data Mining | Mike Gelbart, University of British Columbia | CPSC-340 | YouTube-Lectures | 2018 |
20. | Foundations of Machine Learning | David Rosenberg, Bloomberg | FOML | YouTube-Lectures | 2018 |
21. | Introduction to Machine Learning | Andreas Krause, ETH Zuerich | IntroML | YouTube-Lectures | 2018 |
22. | Advanced Machine Learning | Joachim Buhmann, ETH Zuerich | AML-18 | YouTube-Lectures | 2018 |
Go to Contents
:balloon:
Reinforcement Learning :hotsprings:
:video_game:
S.No | Course Name | University/Instructor(s) | Course Webpage | Video Lectures | Year |
---|---|---|---|---|---|
1. | Short Course on Reinforcement Learning | Satinder Singh, UMichigan |
None
|
YouTube-Lectures | 2011 |
2. | Approximate Dynamic Programming | Dimitri P. Bertsekas, MIT | Lecture-Slides | YouTube-Lectures | 2014 |
3. | Introduction to Reinforcement Learning | David Silver, DeepMind | UCL-RL | YouTube-Lectures | 2015 |
4. | Reinforcement Learning | Charles Isbell, Chris Pryby, GaTech; Michael Littman, Brown | RL-Udacity | YouTube-Lectures | 2015 |
5. | Reinforcement Learning | Balaraman Ravindran, IIT Madras | RL-IITM | YouTube-Lectures | 2016 |
6. | Deep Reinforcement Learning | Sergey Levine, UC Berkeley | CS-294 | YouTube-Lectures | S2017 |
7. | Deep Reinforcement Learning | Sergey Levine, UC Berkeley | CS-294 | YouTube-Lectures | F2017 |
8. | Deep RL Bootcamp | Many legends, UC Berkeley | Deep-RL | YouTube-Lectures | 2017 |
9. | Deep Reinforcement Learning | Sergey Levine, UC Berkeley | CS-294-112 | YouTube-Lectures | 2018 |
10. | Reinforcement Learning | Pascal Poupart, University of Waterloo | CS-885 | YouTube-Lectures | 2018 |
11. | Deep Reinforcement Learning and Control | Katerina Fragkiadaki and Tom Mitchell, CMU | 10-703 | YouTube-Lectures | 2018 |
Go to Contents
S.No | Course Name | University/Instructor(s) | Course WebPage | Lecture Videos | Year |
---|---|---|---|---|---|
1. | Probabilistic Graphical Models | Many Legends, MPI-IS | MLSS-Tuebingen | YouTube-Lectures | 2013 |
2. | Probabilistic Modeling and Machine Learning | Zoubin Ghahramani, University of Cambridge | WUST-Wroclaw | YouTube-Lectures | 2013 |
3. | Probabilistic Graphical Models | Eric Xing, CMU | 10-708 | YouTube-Lectures | 2014 |
4. | Learning with Structured Data: An Introduction to Probabilistic Graphical Models | Christoph Lampert, IST Austria |
None
|
YouTube-Lectures | 2016 |
5. | Probabilistic Graphical Models | Nicholas Zabaras, University of Notre Dame | PGM | YouTube-Lectures | 2018 |
Go to Contents
:hibiscus:
Natural Language Processing - (More Applied)
:cherry_blossom:
:sparkling_heart:
S.No | Course Name | University/Instructor(s) | Course WebPage | Lecture Videos | Year |
---|---|---|---|---|---|
1. | Deep Learning for Natural Language Processing | Nils Reimers, TU Darmstadt | DL4NLP | YouTube-Lectures | 2015-2017 |
2. | Deep Learning for Natural Language Processing | Many Legends, DeepMind-Oxford | DL-NLP | YouTube-Lectures | 2017 |
3. | Deep Learning for Speech & Language | UPC Barcelona | DL-SL | Lecture-Videos | 2017 |
4. | Neural Networks for Natural Language Processing | Graham Neubig, CMU | NN4NLP Code | YouTube-Lectures | 2017 |
5. | Neural Networks for Natural Language Processing | Graham Neubig, CMU | NN4-NLP | YouTube-Lectures | 2018 |
6. | Neural Networks for Natural Language Processing | Graham Neubig, CMU | NN4NLP | YouTube-Lectures | 2019 |
Go to Contents
Automatic Speech Recognition :speech_balloon:
:thought_balloon:
S.No | Course Name | University/Instructor(s) | Course WebPage | Lecture Videos | Year |
---|---|---|---|---|---|
1. | Deep Learning for Speech & Language | UPC Barcelona | DL-SL | Lecture-Videos YouTube-Videos | 2017 |
2. | Speech and Audio in the Northeast | Many Legends, Google NYC | SANE-15 | YouTube-Videos | 2015 |
3. | Speech and Audio in the Northeast | Many Legends, Google NYC | SANE-17 | YouTube-Videos | 2017 |
4. | Speech and Audio in the Northeast | Many Legends, Google Cambridge | SANE-18 | YouTube-Videos | 2018 |
-1. | Deep Learning for Speech Recognition | Many Legends, AoE |
None
|
YouTube-Videos | 2015-2018 |
Go to Contents
:fire:
Modern Computer Vision
:movie_camera:
S.No | Course Name | University/Instructor(s) | Course WebPage | Lecture Videos | Year |
---|---|---|---|---|---|
1. | Computer Vision - (classical) | Mubarak Shah, UCF | CAP-5415 | YouTube-Lectures | 2012 |
2. | Computer Vision - (classical) | Mubarak Shah, UCF | CAP-5415 | YouTube-Lectures | 2014 |
3. | Introduction to Computer Vision (foundation) | Aaron Bobick, Irfan Essa, Arpan Chakraborty | CV-Udacity | YouTube-Lectures | 2016 |
4. | Autonomous Navigation for Flying Robots | Juergen Sturm, TUM | Autonavx | YouTube-Lectures | 2014 |
5. | SLAM - Mobile Robotics | Cyrill Stachniss, Universitaet Freiburg | RobotMapping | YouTube-Lectures | 2014 |
6. | Deep Learning for Computer Vision | UPC Barcelona | DLCV-16 DLCV-17 DLCV-18 | YouTube-Lectures | 2016-2018 |
7. | Convolutional Neural Networks | Andrew Ng, Stanford University | DeepLearning.AI | YouTube-Lectures | 2017 |
8. | Variational Methods for Computer Vision | Daniel Cremers, TUM | VMCV | YouTube-Lectures | 2017 |
9. | Winter School on Computer Vision | Lots of Legends, Israel Institute for Advanced Studies | WS-CV | YouTube-Lectures | 2017 |
10. | Deep Learning for Visual Computing | Debdoot Sheet, IIT-Kgp | Nptel Notebooks | YouTube-Lectures | 2018 |
Go to Contents
:star2:
Boot Camps or Summer Schools :maple_leaf:
S.No | Course Name | University/Instructor(s) | Course WebPage | Lecture Videos | Year |
---|---|---|---|---|---|
1. | Deep Learning, Feature Learning | Lots of Legends, IPAM UCLA | GSS-2012 | YouTube-Lectures | 2012 |
2. | Big Data Boot Camp | Many Legends, Simons Institute | Big Data | YouTube-Lectures | 2013 |
3 | Mathematics of Signal Processing | Many Legends, Hausdorff Institute for Mathematics | SigProc | YouTube-Lectures | 2016 |
4. | Microsoft Research - Machine Learning Course | S V N Vishwanathan and Prateek Jain MS-Research |
None
|
YouTube-Lectures | 2016 |
5. | Deep Learning Summer School | Lots of Legends, Université de Montréal | DL-SS-16 | YouTube-Lectures | 2016 |
6. | Machine Learning Advances and Applications Seminar | Lots of Legends, Fields Institute, University of Toronto | MLAAS | YouTube-Lectures Video-Lectures | 2016-2017 |
7. | Machine Learning Advances and Applications Seminar | Lots of Legends, Fields Institute, University of Toronto | MLAAS | Video Lectures | 2017-2018 |
8. | Representation Learning | Many Legends, Simons Institute | RepLearn | YouTube-Lectures | 2017 |
9. | Foundations of Machine Learning | Many Legends, Simons Institute | ML-BootCamp | YouTube-Lectures | 2017 |
10. | Optimization, Statistics, and Uncertainty | Many Legends, Simons Institute | Optim-Stats | YouTube-Lectures | 2017 |
11. | Deep Learning: Theory, Algorithms, and Applications | Many Legends, TU-Berlin | DL: TAA | YouTube-Lectures | 2017 |
12. | Foundations of Data Science | Many Legends, Simons Institute | DS-BootCamp | YouTube-Lectures | 2018 |
13. | Deep|Bayes | Many Legends, HSE Moscow | DeepBayes.ru | YouTube-Lectures | 2018 |
14. | New Deep Learning Techniques | Many Legends, IPAM UCLA | IPAM-Workshop | YouTube-Lectures | 2018 |
15. | Machine Learning Advances and Applications Seminar | Lots of Legends, Fields Institute, University of Toronto | MLASS | Video Lectures | 2018-2019 |
16. | MIFODS- ML, Stats, ToC seminar | Lots of Legends, MIT | MIFODS-seminar | Lecture-videos | 2018-2019 |
Go to Contents
:bird:
Bird's Eye view of A(G)I
S.No | Course Name | University/Instructor(s) | Course WebPage | Lecture Videos | Year |
---|---|---|---|---|---|
1. | Artificial General Intelligence | Lots of Legends, MIT | 6.S099-AGI | Lecture-Videos | 2018-2019 |
2. | AI Podcast | Lots of Legends, MIT | AI-Pod | YouTube-Lectures | 2018-2019 |
Go to Contents
To-Do :runner:
Go to Contents
Contributions :pray:
If you find a course that fits in any of the above categories (i.e. DL, ML, RL, CV, NLP), and the course has lecture videos (with slides - optional), then please raise an issue or send a PR by updating the course according to the above format.
Danke Sehr!
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 免费课程 | 课程解锁卡不够用?成为认证用户送所有课程解锁卡!
- 慕课网视频所有课程都有,qq:3028938351,微信:mukewangjiaocheng
- 慕课网所有课程全部都有!百分百高清原画,官方品质!
- 慕课网所有付费课程全部都有!百分百高清原画,官方体验!
- 2019慕课网全站付费课程超300部课程分享[百度网盘]
- 大学课程共享计划整理
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Building Websites with Joomla!
H Graf / Packt Publishing / 2006-01-20 / USD 44.99
This book is a fast paced tutorial to creating a website using Joomla!. If you've never used Joomla!, or even any web content management system before, then this book will walk you through each step i......一起来看看 《Building Websites with Joomla!》 这本书的介绍吧!