matlab练习程序(局部加权线性回归)

栏目: 编程工具 · 发布时间: 5年前

内容简介:通常我们使用的最小二乘都需要预先设定一个模型,然后通过最小二乘方法解出模型的系数。而大多数情况是我们是不知道这个模型的,比如这篇博客中z=ax^2+by^2+cxy+dx+ey+f 这样的模型。局部加权线性最小二乘就不需要我们预先知道待求解的模型,因为该方法是基于多个线性函数的叠加,最终只用到了线性模型。

通常我们使用的最小二乘都需要预先设定一个模型,然后通过最小二乘方法解出模型的系数。

而大多数情况是我们是不知道这个模型的,比如这篇博客中z=ax^2+by^2+cxy+dx+ey+f 这样的模型。

局部加权线性最小二乘就不需要我们预先知道待求解的模型,因为该方法是基于多个线性函数的叠加,最终只用到了线性模型。

计算线性模型时引入了一个加权函数:

matlab练习程序(局部加权线性回归) 来给当前预测数据分配权重,分配机制是:给距离近的点更高的权重,给距离远的点更低的权重。

公式中的k类似与高斯函数中的sigma。

当sigma变大时,函数变得矮胖,计算局部线性函数时更多的使用全局数据;

当sigma变小时,函数变得瘦高,计算局部线性函数时更多的使用局部数据。

代码如下:

clear all;
close all;
clc;

x=(1:0.1:10)';
y=x.^2+x+3 +rand(length(x),1)*6;
plot(x,y,'.')

sigma=0.1;              %设置局部窗口,越大越使用全局数据,越小越使用局部数据
W=zeros(length(x));
C=[];
for i=1:length(x)    
    for j=1:length(x) 
        W(j,j)=exp(-((x(i)-x(j))^2)/(2*sigma^2));   %权重矩阵
    end

    XX=[x ones(length(x),1)];
    YY=y;
    C=[C inv(XX'*W*XX)*XX'*W*YY];           %加权最小二乘,计算求得局部线性函数的系数
    
end

re=diag(XX*C);
hold on;
plot(x,re);

结果如下:

matlab练习程序(局部加权线性回归)

可以看出,红色的局部线性函数最终拟合出了全局的数据。

不过该方法既然不需要知道模型,那我们如何预测未来的数据结果呢?


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

数据结构、算法与应用(原书第2版)

数据结构、算法与应用(原书第2版)

Sartaj Sahni / 王立柱、刘志红 / 机械工业出版社 / 2015-4 / 79.00元

《数据结构、算法与应用——C++语言描述》是享有盛誉的数据结构教科书的第2版。它完整地包含了基本数据结构的内容,是CS2课程的理想用书。作者Sartaj Sahni通过循循善诱的讲解、直观具体的讨论和基于现实的应用,让读者轻松、愉快地学习。新版书着重利用标准模板库(STL),把书中开发的数据结构和算法与相应的STL实现方法相互关联。本书还增加了很多新的实例和练习题。 书中的应用实例是它的特色......一起来看看 《数据结构、算法与应用(原书第2版)》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

URL 编码/解码
URL 编码/解码

URL 编码/解码

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具