Dump Plugin并行化实践

栏目: Java · 发布时间: 5年前

内容简介:先简单介绍下Dump Plugin的由来,在搜索Dump中心服务化的项目中,我们把Dump中心的增量数据产出分为2个阶段,Loader阶段和Join阶段,Loader阶段把数据准备成Key-Values形式,Join阶段将数据取出,计算各种业务逻辑并产出最终数据。业务逻辑的计算是相当繁琐且易出错,这类事情做一遍足以,所以设计了一个接口,按照业务自身划分成一个个小块逻辑实现接口。这些个小业务逻辑模块即构成Dump的业务Plugin。这样做的好处:1,  按业务本身划分,结构相对清晰,容易维护。

先简单介绍下Dump Plugin的由来,在搜索Dump中心服务化的项目中,我们把Dump中心的增量数据产出分为2个阶段,Loader阶段和Join阶段,Loader阶段把数据准备成Key-Values形式,Join阶段将数据取出,计算各种业务逻辑并产出最终数据。业务逻辑的计算是相当繁琐且易出错,这类事情做一遍足以,所以设计了一个接口,按照业务自身划分成一个个小块逻辑实现接口。这些个小业务逻辑模块即构成Dump的业务Plugin。

这样做的好处:

1,  按业务本身划分,结构相对清晰,容易维护。

2,  架构和业务通过接口交互,重构架构将尽可能少的影响业务代码

3,  每个业务模块的耗时能准确统计出并能做针对性的优化。

在最初的版本中,先根据依赖关系计算好plugin的执行顺序,然后顺序执行,是一个串行的过程,如下图:

Dump Plugin并行化实践

此种方式,计算耗时与业务的复杂程度成正比。而目前Dump中心已经有十几个个业务逻辑Plugin,并且plugin之间有复杂的依赖关系。所以我们尝试用更高效的并发方式去运行这些plugin。这个项目用的开发语言是Java,Java的多线程有多种成熟的设计模式,结合现有框架,我们设计了两种方案并分别尝试。

方案1,以单条数据为粒度,在一条数据的运行内部实现并行化,如下图:

Dump Plugin并行化实践

简单的来说,就是起一个工作线程组来运行plugin,来一条数据后,工作线程根据依赖关系获取当前可运行的plugin,当所有plugin都运行完毕后,输出数据。类似于Work Thread模式,工作线程没数据就等着,来了数据就做。主要代码流程如下:

public class Main {
 private Semaphore mainSemaphore, workSemaphore;
 private Data data;
 private int workThreadNum;

 public Data run(Data data) {
   this.data = data;
   workSemaphore.release(workThreadNum);
   mainSemaphore.acquire(workThreadNum);
   return this.data;
 }

 class WorkThread implements Runnable {
 private boolean loop = true;
 public void run() {
   while(loop) {
     workSemaphore.acquire();
     //getValidPlugin: 一个synchronized的调用,获得未运行的Plguin
     Plugin plugin = getValidPlugin();
     if(plugin != null)
       plugin.run(data);
     else
       mainSemaphore.release(1);
     }
   }
 }
}

代码中使用两个Semaphore信号量来同步主线程和工作线程,每条数据都需要激活和同步,并有一个synchronized的方法来获取当前可运行的Plugin,线程同步开销比较大。实现过程中,采用重任务优先,预先计算等方法,降低并行额外引入的开销。在单个Plugin耗时长,关键路径和非关键路径上的plugin耗时相差不大的情况下,此种方案效果不错。但在目前的业务情况下,效果提升不明显,实测约提升了10%。

通过分析plugin的依赖关系,发现目前业务逻辑下,有两个耗时大的plugin均是关键路径上的,方案1的并行是针对单个宝贝的,我们想能否在批量数据或数据流中实现数据维度的并行。数据维度的并行,最简单的方案是将数据逐条扔给ThreadPoolExecutor,每个线程串行执行,但这种方案对于现有结构来说不合适,原因是plugin的代码无法保证线程安全,于是就有了方案2,如下图:

Dump Plugin并行化实践

每个Plugin都起一个工作线程,数据像流水线一样从Plugin中间流过,plugin的依赖关系决定数据的流向,类似于Guarded Suspension模式,工作线程维护一个Queue来缓存,等plugin准备好,就从Queue中取数据处理。主要代码流程如下:

public interface QueuePutter {
 public void put(Data data);
}

public class Main implements QueuePutter{
 private BlockingQueue
<data>
  resultQueue = new LinkedBlockingQueue
 <data>
  ();

 public List
  <data>
    run(List
   <data>
     dataList) {
   List
    <data>
      resultList = new ArrayList
     <data>
      ();
   for(Data data : dataList) {
     firstPluginThread.put(data);
   }
   putLastData();
   while(true) {
     Data data = resultQueue.take();
     if(isLastData(data)) break;
     resultList.add(data);
   }
   return resultList;
 }

 public void put(Data data) {
   this.resultQueue.put(data);
 }
}

public class PluginThread implements Runnable,QueuePutter {
   private Plugin plugin = null;
   private PluginThread nextPluginThread = null;
   private boolean loop = true;
   private BlockingQueue
      <data>
        queue = new LinkedBlockingQueue
       <data>
        (10);

   public PluginThread(Plugin plugin, QueuePutter next) {
     this.plugin = plugin;
     this.nextPluginThread = next;
   }

   public void run() {
     while(loop) {
       Data data = this.queue.take();
       data = this.plugin.run(data);
       this.nextPluginThread.put(data);
     }
   }

   public void put(Data data) {
     this.queue.put(data);
   }
 }

       </data>
      </data>
     </data>
    </data>
   </data>
  </data>
 </data>
</data>

代码中同步操作通过BlockingQueue来实现。主线程将数据分发给第一个plugin线程,而最后一个plugin线程负责将数据写回给主线程。主线程用一条特殊的数据来标识这组数据的结尾,而后在主线程队列里一直扫描特殊数据,FIFO队列保证了处理的时序。逻辑上来说,方案2的单条数据的处理还是串行,而是多条数据之间的并行,整体性能只取决于最慢的Plugin的耗时,实测中对于批量数据来说,效果要好于方案1。

总结:实践Dump Plugin并行的两种实现方式,对单数据的列并行和对批量数据/数据流的行并行。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

视觉SLAM十四讲

视觉SLAM十四讲

高翔、张涛、等 / 电子工业出版社 / 2017-3 / 75

《视觉SLAM十四讲:从理论到实践》系统介绍了视觉SLAM(同时定位与地图构建)所需的基本知识与核心算法,既包括数学理论基础,如三维空间的刚体运动、非线性优化,又包括计算机视觉的算法实现,例如多视图几何、回环检测等。此外,还提供了大量的实例代码供读者学习研究,从而更深入地掌握这些内容。 《视觉SLAM十四讲:从理论到实践》可以作为对SLAM 感兴趣的研究人员的入门自学材料,也可以作为SLAM......一起来看看 《视觉SLAM十四讲》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具