内容简介:更简单、更快捷:探讨深度学习的未来发展步伐
【51CTO.com快译】机器学习是一门多领域交叉学科,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径。
如果论及哪一个机器学习的领域最为热门,非人工智能莫属,这就是深度学习。深度学习框架又名深度神经网络,一个复杂的模式识别系统,可以实现从自动语言翻译到图像识别的功能。
深度学习需要收集大量的数据,并且拥有处理这些数据的能力,做到这些并非易事,但深度学习技术正在蓬勃发展的道路上,并且已经突破了很多障碍。深度学习对于分析非结构化数据具有非常大的优势。
各大软件巨头们也在酝酿一场深度学习技术的争霸战,比如谷歌的TensorFlow项目与百度的paddle。多个软件框架之间的竞争蓄势待发。软件和硬件间的战争开始了。有预言称,专门的硬件设计模型和服务会是深度学习的下一个大的进步,或许有更好、更智能、更高效的算法,无需硬件的辅助就可以把功能服务推向更多人。问题也由此产生,我们中的大多数人都能逐渐理解和接受深度学习技术吗?还是我们一直需要计算机博士们来把握这项技术工作?
微软比谷歌更紧张
一项重要技术展示给世界的好办法,就是引起技术巨头公司们的兴趣。像过去的NoSQL、Hadoop和Spark。在深度学习框架领域,谷歌的TensorFlow已经发展得十分可观,而谷歌云和谷歌专有硬件的研发也紧随其后。作为竞争对手,微软反击谷歌的杀手锏是认知 工具 包,也叫CNTK。CNTK2.0版在多个层面挑战TensorFlow。CNTK现在提供JavaAPI,可接受Spark处理框架,同时支持Keras神经网络图书馆代码,这实际上就是TensorFlow的前端。这样一来,Keras的用户就可以避开谷歌的解决方案而转向微软。
对于谷歌TensorFlow,微软最直接、最有意义的应对方法是让CNTK更快速和准确,并且使PythonAPI提供高级别和低级别的功能。这是微软想出来的最佳应对策略。
当然,所谓的快速和准确并不是吹牛,如果微软的系统比TensorFlow更快,那便意味着人们有更多的选择而不只是去砸硬件设备。比如,
硬件:Graphcore和波计算
谷歌TPU的一个缺点是,他们只在谷歌云中有效。对于那些已经投资了GCP的人来说,这可能不是个问题,但是对于大多数人,这是一个潜在的"阻断剂"。为深入学习专用硅,如NVIDIA的GPU需要的附加条件较少。几家公司最近推出了专门的硅优于GPU深度学习的应用。启动Graphcore深度学习处理器,专门的硅片设计过程中采用神经网络的图形数据。该公司称面临的挑战是创建硬件优化,以运行循环或相互连接的网络和其他网络。
一种Graphcore加速的方法是保持网络模型尽可能接近硅,避免对外部存储器的往返访问。尽可能的避免数据运动是加快机器学习的一种常用方法,但Graphcore以这种方式到达另一个层次。
波计算是深度学习专用硬件的另一种启用方式。像Graphcore一样,公司认为GPU的发展和它自身固有的局限性有很大关系,波计算的计划是建立"数据流的设备,"机架式系统使用定制芯片,可以提供2.9petaops计算("petaops"是定点运算,不是"千万亿次的"浮点运算)。这样的运算速度超出了谷歌TPU提供的92teraops的订单。
brodmann17:小模型,高速度
鉴于Graphcore和波计算的硬件要优于TPU,其他第三方的目的是展示框架和更好的运算法则,可以带来更有力的机械学习。有些用于定位缺乏访问处理区域,例如智能手机。谷歌已经针对TensorFlow在移动设备上的应用作出升级,一个名为Brodmann17的工具试图在智能手机级硬盘上占用5%的资源(包括计算、存储和数据)。
该公司的做法是由首席执行官和创始人AdiPinhas提出的,用现有的标准神经网络模块创建一个更小的模型。Pinhas说,相比其他流行的深度学习架构,小的模型数量少于训练数据的10%。但在相同的时间里需要一些培训。最终的目的是对速度的精确权衡,更快的预测时间,功耗更低,占用的内存少。
擦出新火花
今年早些时候,InfoWorld撰稿人JamesKobielus预言深度学习框架之间的战火渐起。雅虎已经把TensorFlow引向Spark,但是Spark的主要供应商Databricks现在向Spark提供自己的开源软件包来整合深度学习框架。全民深度学习?
Databricks曾经在自己的新闻稿里提到"民主化的人工智能和数据科学"。这样的论调意味着什么呢?微软认为他们的CNTK2.0可以成为一项有力的举措,使AI技术无处不在的面向所有人。深度学习固有的复杂性并不是唯一要克服的障碍。深度学习的整个工作流程仍然是一个点对点的工作流程。这里有需要填补的空白,所有平台、框架和云背后的商业机构都在竞相填补端到端的解决方案。关于深度学习技术,下一步的关键将不仅仅是找到一个真正的深层学习框架。而是找到一个统一的工作流程。这样一来,不管是谁在开发运行项目,其深度学习框架都可以有据可循的进行开发和研究。作者:SerdarYegulalp
原文链接:
http://www.infoworld.com/article/3199950/artificial-intelligence/deep-learnings-next-steps-custom-hardware-better-frameworks-easier-on-ramps.html
刘妮娜译
【51CTO译稿,合作站点转载请注明原文译者和出处为51CTO.com】
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 紧追亚马逊步伐,谷歌云推出测试版深度学习载体
- 紧跟 GNOME 步伐,Freedesktop.org 迁移至 GitLab
- 2020 年 Go 语言盘点:新冠大流行阻挡不了 Go 演进的步伐
- 华为以政务外网IPv6+演进EVP方案加快数字政府建设步伐
- 沈向洋:从深度学习到深度理解
- 深度重建:基于深度学习的图像重建
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Types and Programming Languages
Benjamin C. Pierce / The MIT Press / 2002-2-1 / USD 95.00
A type system is a syntactic method for automatically checking the absence of certain erroneous behaviors by classifying program phrases according to the kinds of values they compute. The study of typ......一起来看看 《Types and Programming Languages》 这本书的介绍吧!