内容简介:List of implemented methods:List of supported datasets:List of supported tasks:
PyVideoResearch
-
A repositsory of common methods, datasets, and tasks for video research
-
Please note that this repository is in the process of being released to the public. Please bear with us as we standardize the API and streamline the code.
-
Some of the baselines were run with an older version of the codebase (but the git commit hash is available for each experiment) and might need to be updated.
-
We encourage you to submit a Pull Request to help us document and incorporate as many baselines and datasets as possible to this codebase
-
We hope this project will be of value to the community and everyone will consider adding their methods to this codebase
List of implemented methods:
- I3D
- 3D ResNet
- Asynchronous Temporal Fields
- Actor Observer Network
- Temporal Segment Networks
- Temporal Relational Networks
- Non-local neural networks
- Two-Stream Networks
- I3D Mask-RCNN
- 3D ResNet Video Autoencoder
List of supported datasets:
- Charades
- CharadesEgo
- Kinetics
- AVA
- ActivityNet
- Something Something
- Jester
List of supported tasks:
- Action classification
- Action localization
- Spatial Action localization
- Inpainting
- Video Alignment
- Triplet Classification
Contributor: Gunnar Atli Sigurdsson
- If this code helps your research, please consider citing:
@inproceedings{sigurdsson2018pyvideoresearch, author = {Gunnar A. Sigurdsson and Abhinav Gupta}, title = {PyVideoResearch}, year={2018}, code = {https://github.com/gsig/PyVideoResearch}, }
Installation Instructions
Requirements:
- Python 2.7 or Python 3.6
- PyTorch 0.4 or PyTorch 1.0
Python packages:
- numpy
- ffmpeg-python
- PIL
- cv2
- torchvision
See external libraries under external/ for requirements if using their corresponding baselines.
Run the following to get both this repository and the remote repositories under external/
git clone git@github.com:gsig/PyVideoResearch.git git submodule update --init --recursive
Steps to train your own network:
- Download the corresponding dataset
- Duplicate and edit one of the experiment files under exp/ with appropriate parameters. For additional parameters, see opts.py
- Run an experiment by calling python exp/rgbnet.py where rgbnet.py is your experiment file. See baseline_exp/ for a variety of baselines.
- The checkpoints/logfiles/outputs are stored in your specified cache directory.
- Build of the code, cite our papers, and say hi to us at CVPR.
Good luck!
Pretrained networks:
We are in the process of preparing and releasing the pre-trained models. If anything is missing, please let us know. The names correspond to experiments under "baseline_exp". While we standardize the names, please be aware that some of the model may have names listed after "original name" in the experiment file. We also provide the generated log.txt file for each experiment as name.txt
The models are stored here: https://www.dropbox.com/sh/duodxydolzz5qfl/AAC0i70lv8ssVRWg4ux5Vv9pa?dl=0
-
ResNet50 pre-trained on Charades
- resnet50_rgb.pth.tar
- resnet50_rgb_python3.pth.tar
-
ResNet1010 pre-trained on Charades
- resnet101_rgb.pth.tar
- resnet101_rgb_python3.pth.tar
-
I3D pre-trained on ImageNet (courtesy of https://github.com/piergiaj )
- aj_rgb_imagenet.pth
-
I3D pre-trained on ImageNet+Kinetics (courtesy of https://github.com/piergiaj )
- aj_rgb_kinetics.pth
-
actor_observer_3d_charades_ego.py
-
actor_observer_charades_ego.py
-
actor_observer_classification_charades_ego.py
-
async_tf_i3d_charades.py
- async__par1.pth.tar
- async__par1.txt
-
i3d_ava.py
-
i3d_mask_rcnn_ava.py
-
i3d_something_something.py
-
inpainting.py
-
nonlocal_resnet50_3d_charades.py
-
nonlocal_resnet50_3d_kinetics.py
- i3d8l.pth.tar
- i3d8l.txt
-
resnet50_3d_charades.py
- i3d12b2.pth.tar
- i3d12b2.txt
-
resnet50_3d_kinetics.py
- i3d8k.pth.tar
- i3d8k.txt
-
temporal_relational_networks_charades.py
-
temporal_relational_networks_something_something.py
- trn4b.pth.tar
- trn4b.txt
-
temporal_segment_networks_activity_net.py
-
temporal_segment_networks_charades.py
- trn2f3b.pth.tar
- trn2f3b.txt
-
two_stream_kinetics.py
-
two_stream_networks_activity_net.py
- anet2.pth.tar
- anet2.txt
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
解放战争(上)(1945年8月—1948年9月)
王树增 / 人民文学出版社 / 2009-8 / 60.00
《解放战争》为王树增非虚构文学著述中规模最大的作品。武器简陋、兵力不足的军队对抗拥有现代武器装备的兵力庞大的军队,数量不多、面积有限的解放区最终扩展成为九百六十万平方公里的共和国,解放战争在短短四年时间里演绎的是人类历史上的战争传奇。国际风云,政治智慧,时事洞察,军事谋略,军队意志,作战才能,作品具有宏阔的视角和入微的体察,包含着惊心动魄的人生沉浮和变幻莫测的战场胜负,尽展中国历史上规模最大的一场......一起来看看 《解放战争(上)(1945年8月—1948年9月)》 这本书的介绍吧!