内容简介:之前发布非常感谢 “wxe” 网友的提问,让我在测试过程中发现一个之前我们优化了两个部分,
之前发布 【Go】优雅的读取http请求或响应的数据续 文章,网友 “wxe” 咨询:“优化前后的请求耗时变化有多大”,之前只分析了内存分配,这篇文章用单元测试的方式分析优化前后的耗时情况, 本文源码 。
非常感谢 “wxe” 网友的提问,让我在测试过程中发现一个 json 序列化的问题。
之前我们优化了两个部分, json 与 ioutil.ReadAll , 先对比 ioutil.ReadAll , 这里测试的代码分成两个部分做对比,一部分单纯对比 ioutil.ReadAll 和 io.Copy + sync.Pool ,另一部分增加 jsoniter.Unmarshal 来延迟 pool.Put(buffer) 的执行, 源码 。
package iouitl_readall
import (
"bytes"
"io"
"io/ioutil"
"sync"
jsoniter "github.com/json-iterator/go"
)
var pool = sync.Pool{
New: func() interface{} {
return bytes.NewBuffer(make([]byte, 4096))
},
}
func IoCopyAndJson(r io.Reader) error {
buffer := pool.Get().(*bytes.Buffer)
buffer.Reset()
defer pool.Put(buffer)
res := Do(r)
_, err := io.Copy(buffer, res)
if err != nil {
return err
}
m := map[string]string{}
err = jsoniter.Unmarshal(buffer.Bytes(), &m)
return err
}
func IouitlReadAllAndJson(r io.Reader) error {
res := Do(r)
data, err := ioutil.ReadAll(res)
if err != nil {
return err
}
m := map[string]string{}
err = jsoniter.Unmarshal(data, &m)
return err
}
func IoCopy(r io.Reader) error {
buffer := pool.Get().(*bytes.Buffer)
buffer.Reset()
defer pool.Put(buffer)
res := Do(r)
_, err := io.Copy(buffer, res)
if err != nil {
return err
}
return err
}
func IouitlReadAll(r io.Reader) error {
res := Do(r)
data, err := ioutil.ReadAll(res)
if err != nil {
return err
}
_ = data
return err
}
测试代码如下 源码 :
package iouitl_readall
import (
"bytes"
"testing"
)
var data = bytes.Repeat([]byte("ABCD"), 1000)
func BenchmarkIouitlReadAll(b *testing.B) {
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
err := IouitlReadAll(bytes.NewReader(data))
if err != nil {
b.Error(err.Error())
}
}
})
}
func BenchmarkIoCopy(b *testing.B) {
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
err := IoCopy(bytes.NewReader(data))
if err != nil {
b.Error(err.Error())
}
}
})
}
func BenchmarkIouitlReadAllAndJson(b *testing.B) {
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
err := IouitlReadAllAndJson(bytes.NewReader(data))
if err != nil {
b.Error(err.Error())
}
}
})
}
func BenchmarkIoCopyAndJson(b *testing.B) {
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
err := IoCopyAndJson(bytes.NewReader(data))
if err != nil {
b.Error(err.Error())
}
}
})
}
测试结果如下:
goos: darwin goarch: amd64 pkg: github.com/thinkeridea/example/iouitl_readall BenchmarkIouitlReadAll-8 500000 2752 ns/op 14496 B/op 6 allocs/op BenchmarkIoCopy-8 20000000 65.2 ns/op 48 B/op 1 allocs/op BenchmarkIouitlReadAllAndJson-8 100000 20022 ns/op 46542 B/op 616 allocs/op BenchmarkIoCopyAndJson-8 100000 17615 ns/op 32102 B/op 611 allocs/op
结论:
可以发现 IoCopy 方法是 IouitlReadAll 方法效率的 40 倍,内存分配也很少,而 IoCopyAndJson 和 IouitlReadAllAndJson 的效率差异极小仅有 2407ns ,大约是 1.13倍,不过内存分配还是少了很多的,为什么会这样呢,这就是 sync.Pool 的导致的, sync.Pool 每次获取使用时间越短,命中率就越高,就可以减少创建新的缓存,这样效率就会大大提高,而 jsoniter.Unmarshal 很耗时,就导致 sync.Pool 的命中率降低了,所以性能下降极其明显.
使用 io.Copy + sync.Pool 表面上执行效率不会有很大提升,但是会大幅度减少内存分配,从而可以减少 GC 的负担,在单元测试中我们并没有考虑 GC 的问题,而 GC 能带来的性能提升会更有优势。
在看一下 json 使用 sync.Pool 的效果吧 源码
package iouitl_readall
import (
"bytes"
"encoding/json"
jsoniter "github.com/json-iterator/go"
)
func Json(r map[string]string) error {
data, err := json.Marshal(r)
if err != nil {
return err
}
_ = data
return nil
}
func JsonPool(r map[string]string) error {
buffer := pool.Get().(*bytes.Buffer)
buffer.Reset()
defer pool.Put(buffer)
e := json.NewEncoder(buffer)
err := e.Encode(r)
if err != nil {
return err
}
return nil
}
func JsonIter(r map[string]string) error {
data, err := jsoniter.Marshal(r)
if err != nil {
return err
}
_ = data
return nil
}
func JsonIterPool(r map[string]string) error {
buffer := pool.Get().(*bytes.Buffer)
buffer.Reset()
defer pool.Put(buffer)
e := jsoniter.NewEncoder(buffer)
err := e.Encode(r)
if err != nil {
return err
}
return nil
}
性能测试代码 源码 :
package iouitl_readall
import (
"strconv"
"strings"
"testing"
)
var request map[string]string
func init() {
request = make(map[string]string, 100)
for i := 0; i < 100; i++ {
request["X"+strconv.Itoa(i)] = strings.Repeat("A", i/2)
}
}
func BenchmarkJson(b *testing.B) {
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
err := Json(request)
if err != nil {
b.Error(err.Error())
}
}
})
}
func BenchmarkJsonIter(b *testing.B) {
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
err := JsonIter(request)
if err != nil {
b.Error(err.Error())
}
}
})
}
func BenchmarkJsonPool(b *testing.B) {
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
err := JsonPool(request)
if err != nil {
b.Error(err.Error())
}
}
})
}
func BenchmarkJsonIterPool(b *testing.B) {
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
err := JsonIterPool(request)
if err != nil {
b.Error(err.Error())
}
}
})
}
测试结果如下:
goos: darwin goarch: amd64 pkg: github.com/thinkeridea/example/iouitl_readall BenchmarkJson-8 100000 13297 ns/op 13669 B/op 207 allocs/op BenchmarkJsonPool-8 100000 13310 ns/op 10218 B/op 206 allocs/op BenchmarkJsonIter-8 500000 2948 ns/op 3594 B/op 4 allocs/op BenchmarkJsonIterPool-8 200000 6126 ns/op 6040 B/op 144 allocs/op PASS ok github.com/thinkeridea/example/iouitl_readall 12.716s
这里使用了两个 json 包, 一个是标准库的,一个是 jsoniter (也是社区反馈效率最高的),对比两个包使用 sync.Pool 和不使用之间的差异,发现标准库 json 包使用后内存有少量减少,但是运行效率稍微下降了,差异不是很大, jsoniter 包差异之所谓非常明显,发现使用 sync.Pool 之后不仅内存分配更多了,执行效率也大幅度下降,差了将近3倍有余。
是不是很奔溃,这是啥情况 jsoniter 本身就使用了 sync.Pool 作缓冲,我们使用 jsoniter.NewEncoder(buffer) 创建一个序列化实例,但是其内部并没有直接使用 io.Writer 而是先使用缓冲序列化数据,之后写入 io.Writer , 具体代码如下:
// Flush writes any buffered data to the underlying io.Writer.
func (stream *Stream) Flush() error {
if stream.out == nil {
return nil
}
if stream.Error != nil {
return stream.Error
}
n, err := stream.out.Write(stream.buf)
if err != nil {
if stream.Error == nil {
stream.Error = err
}
return err
}
stream.buf = stream.buf[n:]
return nil
}
这样一来我们使用 buffer 做 json 序列化优化效果就大打折扣,甚至适得其反了。
再次感谢 “wxe” 网友的提问,这里没有使用实际的应用场景做性能测试,主要发现在性能测试中使用 http 服务会导致 connect: can't assign requested address 问题,所以测试用使用了函数模拟,如果有朋友有更好的测试方法欢迎一起交流。
谢谢你请我吃糖果
支付宝
微信
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- SpringSession:请求与响应重写
- 谈谈HTTP的请求和响应
- django从请求到响应的过程
- 关于HTTP报文请求方法和状态响应码
- 优雅的读取http请求或响应的数据
- 优雅的记录http请求或响应的数据
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
敏捷软件开发
Robert C.Martin,、Micah Martin / 邓辉、孙鸣 / 人民邮电出版社 / 2010-12 / 79.00元
要想成为一名优秀的软件开发人员,需要熟练应用编程语言和开发工具,更重要的是能够领悟优美代码背后的原则和前人总结的经验——这正是本书的主题。本书凝聚了世界级软件开发大师Robert C. Martin数十年软件开发和培训经验,Java版曾荣获计算机图书最高荣誉——Jolt大奖,是广受推崇的经典著作,自出版以来一直畅销不衰。 不要被书名误导了,本书不是那种以开发过程为主题的敏捷软件开发类图书。在......一起来看看 《敏捷软件开发》 这本书的介绍吧!