内容简介:原始的GAN网络在训练过程中生成者生成图像质量不太稳定,无法得到高质量的生成者网络,导致这个问题的主要原因是生成者与判别者使用相同的反向传播网络,对生成者网络的改进就是用卷积神经网络替代原理的MLP实现稳定生成者网络,生成高质量的图像。这个就是Deep Convolutional Generative Adversarial Network (DCGAN)的由来。相比GAN,DCGAN把原来使用MLP的地方都改成了CNN,同时去掉了池化层,改变如下:其中基于卷积神经网络的生成器模型如下:判别器模型如下:
DCGAN介绍
原始的GAN网络在训练过程中生成者生成图像质量不太稳定,无法得到高质量的生成者网络,导致这个问题的主要原因是生成者与判别者使用相同的反向传播网络,对生成者网络的改进就是用卷积神经网络替代原理的MLP实现稳定生成者网络,生成高质量的图像。这个就是Deep Convolutional Generative Adversarial Network (DCGAN)的由来。相比GAN,DCGAN把原来使用MLP的地方都改成了CNN,同时去掉了池化层,改变如下:
- 判别器使用正常卷积,最后一层使用全连接层做预测判别
- 生成器根据输入的随机噪声,通过卷积神经网络生成一张图像
- 无论是生成器还是判别器都在卷积层后面有BN层
- 生成器与判别器分别使用relu与leaky relu作为激活函数, 除了生成器的最后一层
- 生成器使用转置/分步卷积、判别器使用正常卷积。
最终DCGAN的网络模型如下:
其中基于卷积神经网络的生成器模型如下:
判别器模型如下:
代码实现:
生成器:
class Generator: def __init__(self, depths=[1024, 512, 256, 128], s_size=4): self.depths = depths + [3] self.s_size = s_size self.reuse = False def __call__(self, inputs, training=False): inputs = tf.convert_to_tensor(inputs) with tf.variable_scope('g', reuse=self.reuse): # reshape from inputs with tf.variable_scope('reshape'): outputs = tf.layers.dense(inputs, self.depths[0] * self.s_size * self.s_size) outputs = tf.reshape(outputs, [-1, self.s_size, self.s_size, self.depths[0]]) outputs = tf.nn.relu(tf.layers.batch_normalization(outputs, training=training), name='outputs') # deconvolution (transpose of convolution) x 4 with tf.variable_scope('deconv1'): outputs = tf.layers.conv2d_transpose(outputs, self.depths[1], [5, 5], strides=(2, 2), padding='SAME') outputs = tf.nn.relu(tf.layers.batch_normalization(outputs, training=training), name='outputs') with tf.variable_scope('deconv2'): outputs = tf.layers.conv2d_transpose(outputs, self.depths[2], [5, 5], strides=(2, 2), padding='SAME') outputs = tf.nn.relu(tf.layers.batch_normalization(outputs, training=training), name='outputs') with tf.variable_scope('deconv3'): outputs = tf.layers.conv2d_transpose(outputs, self.depths[3], [5, 5], strides=(2, 2), padding='SAME') outputs = tf.nn.relu(tf.layers.batch_normalization(outputs, training=training), name='outputs') with tf.variable_scope('deconv4'): outputs = tf.layers.conv2d_transpose(outputs, self.depths[4], [5, 5], strides=(2, 2), padding='SAME') # output images with tf.variable_scope('tanh'): outputs = tf.tanh(outputs, name='outputs') self.reuse = True self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='g') return outputs
判别器:
class Discriminator: def __init__(self, depths=[64, 128, 256, 512]): self.depths = [3] + depths self.reuse = False def __call__(self, inputs, training=False, name=''): def leaky_relu(x, leak=0.2, name=''): return tf.maximum(x, x * leak, name=name) outputs = tf.convert_to_tensor(inputs) with tf.name_scope('d' + name), tf.variable_scope('d', reuse=self.reuse): # convolution x 4 with tf.variable_scope('conv1'): outputs = tf.layers.conv2d(outputs, self.depths[1], [5, 5], strides=(2, 2), padding='SAME') outputs = leaky_relu(tf.layers.batch_normalization(outputs, training=training), name='outputs') with tf.variable_scope('conv2'): outputs = tf.layers.conv2d(outputs, self.depths[2], [5, 5], strides=(2, 2), padding='SAME') outputs = leaky_relu(tf.layers.batch_normalization(outputs, training=training), name='outputs') with tf.variable_scope('conv3'): outputs = tf.layers.conv2d(outputs, self.depths[3], [5, 5], strides=(2, 2), padding='SAME') outputs = leaky_relu(tf.layers.batch_normalization(outputs, training=training), name='outputs') with tf.variable_scope('conv4'): outputs = tf.layers.conv2d(outputs, self.depths[4], [5, 5], strides=(2, 2), padding='SAME') outputs = leaky_relu(tf.layers.batch_normalization(outputs, training=training), name='outputs') with tf.variable_scope('classify'): batch_size = outputs.get_shape()[0].value reshape = tf.reshape(outputs, [batch_size, -1]) outputs = tf.layers.dense(reshape, 2, name='outputs') self.reuse = True self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='d') return outputs
损失函数与训练
def loss(self, traindata): """build models, calculate losses. Args: traindata: 4-D Tensor of shape `[batch, height, width, channels]`. Returns: dict of each models' losses. """ generated = self.g(self.z, training=True) g_outputs = self.d(generated, training=True, name='g') t_outputs = self.d(traindata, training=True, name='t') # add each losses to collection tf.add_to_collection( 'g_losses', tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( labels=tf.ones([self.batch_size], dtype=tf.int64), logits=g_outputs))) tf.add_to_collection( 'd_losses', tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( labels=tf.ones([self.batch_size], dtype=tf.int64), logits=t_outputs))) tf.add_to_collection( 'd_losses', tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( labels=tf.zeros([self.batch_size], dtype=tf.int64), logits=g_outputs))) return { self.g: tf.add_n(tf.get_collection('g_losses'), name='total_g_loss'), self.d: tf.add_n(tf.get_collection('d_losses'), name='total_d_loss'), } def train(self, losses, learning_rate=0.0002, beta1=0.5): """ Args: losses dict. Returns: train op. """ g_opt = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1) d_opt = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1) g_opt_op = g_opt.minimize(losses[self.g], var_list=self.g.variables) d_opt_op = d_opt.minimize(losses[self.d], var_list=self.d.variables) with tf.control_dependencies([g_opt_op, d_opt_op]): return tf.no_op(name='train')
训练与运行
开始
2个epoch之后
5个epoch之后
OpenCV+tensorflow系统化学习路线图,推荐视频教程:
计算机视觉从入门到实战以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 你能区分真实人脸和AI生成的虚假人脸吗?
- 人工智能生成仿真人脸
- 深度有趣 | 08 DCGAN人脸图片生成
- 潮科技 | 生成对抗网络研究人脸识别领域获进展
- AI新威胁:刷新即可生成逼真而不存在的人脸
- 一键生成人脸像素图,还能上传到动森!这个项目很好玩
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Effective C++
[美]Scott Meyers / 侯捷 / 电子工业出版社 / 2006-7 / 58.00元
《Effective C++:改善程序与设计的55个具体做法》(中文版)(第3版)一共组织55个准则,每一条准则描述一个编写出更好的C++的方式。每一个条款的背后都有具体范例支撑。第三版有一半以上的篇幅是崭新内容,包括讨论资源管理和模板(templates)运用的两个新章。为反映出现代设计考虑,对第二版论题做了广泛的修订,包括异常(exceptions)、设计模式(design patterns)......一起来看看 《Effective C++》 这本书的介绍吧!