内容简介:原始的GAN网络在训练过程中生成者生成图像质量不太稳定,无法得到高质量的生成者网络,导致这个问题的主要原因是生成者与判别者使用相同的反向传播网络,对生成者网络的改进就是用卷积神经网络替代原理的MLP实现稳定生成者网络,生成高质量的图像。这个就是Deep Convolutional Generative Adversarial Network (DCGAN)的由来。相比GAN,DCGAN把原来使用MLP的地方都改成了CNN,同时去掉了池化层,改变如下:其中基于卷积神经网络的生成器模型如下:判别器模型如下:
DCGAN介绍
原始的GAN网络在训练过程中生成者生成图像质量不太稳定,无法得到高质量的生成者网络,导致这个问题的主要原因是生成者与判别者使用相同的反向传播网络,对生成者网络的改进就是用卷积神经网络替代原理的MLP实现稳定生成者网络,生成高质量的图像。这个就是Deep Convolutional Generative Adversarial Network (DCGAN)的由来。相比GAN,DCGAN把原来使用MLP的地方都改成了CNN,同时去掉了池化层,改变如下:
- 判别器使用正常卷积,最后一层使用全连接层做预测判别
- 生成器根据输入的随机噪声,通过卷积神经网络生成一张图像
- 无论是生成器还是判别器都在卷积层后面有BN层
- 生成器与判别器分别使用relu与leaky relu作为激活函数, 除了生成器的最后一层
- 生成器使用转置/分步卷积、判别器使用正常卷积。
最终DCGAN的网络模型如下:
其中基于卷积神经网络的生成器模型如下:
判别器模型如下:
代码实现:
生成器:
class Generator: def __init__(self, depths=[1024, 512, 256, 128], s_size=4): self.depths = depths + [3] self.s_size = s_size self.reuse = False def __call__(self, inputs, training=False): inputs = tf.convert_to_tensor(inputs) with tf.variable_scope('g', reuse=self.reuse): # reshape from inputs with tf.variable_scope('reshape'): outputs = tf.layers.dense(inputs, self.depths[0] * self.s_size * self.s_size) outputs = tf.reshape(outputs, [-1, self.s_size, self.s_size, self.depths[0]]) outputs = tf.nn.relu(tf.layers.batch_normalization(outputs, training=training), name='outputs') # deconvolution (transpose of convolution) x 4 with tf.variable_scope('deconv1'): outputs = tf.layers.conv2d_transpose(outputs, self.depths[1], [5, 5], strides=(2, 2), padding='SAME') outputs = tf.nn.relu(tf.layers.batch_normalization(outputs, training=training), name='outputs') with tf.variable_scope('deconv2'): outputs = tf.layers.conv2d_transpose(outputs, self.depths[2], [5, 5], strides=(2, 2), padding='SAME') outputs = tf.nn.relu(tf.layers.batch_normalization(outputs, training=training), name='outputs') with tf.variable_scope('deconv3'): outputs = tf.layers.conv2d_transpose(outputs, self.depths[3], [5, 5], strides=(2, 2), padding='SAME') outputs = tf.nn.relu(tf.layers.batch_normalization(outputs, training=training), name='outputs') with tf.variable_scope('deconv4'): outputs = tf.layers.conv2d_transpose(outputs, self.depths[4], [5, 5], strides=(2, 2), padding='SAME') # output images with tf.variable_scope('tanh'): outputs = tf.tanh(outputs, name='outputs') self.reuse = True self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='g') return outputs
判别器:
class Discriminator: def __init__(self, depths=[64, 128, 256, 512]): self.depths = [3] + depths self.reuse = False def __call__(self, inputs, training=False, name=''): def leaky_relu(x, leak=0.2, name=''): return tf.maximum(x, x * leak, name=name) outputs = tf.convert_to_tensor(inputs) with tf.name_scope('d' + name), tf.variable_scope('d', reuse=self.reuse): # convolution x 4 with tf.variable_scope('conv1'): outputs = tf.layers.conv2d(outputs, self.depths[1], [5, 5], strides=(2, 2), padding='SAME') outputs = leaky_relu(tf.layers.batch_normalization(outputs, training=training), name='outputs') with tf.variable_scope('conv2'): outputs = tf.layers.conv2d(outputs, self.depths[2], [5, 5], strides=(2, 2), padding='SAME') outputs = leaky_relu(tf.layers.batch_normalization(outputs, training=training), name='outputs') with tf.variable_scope('conv3'): outputs = tf.layers.conv2d(outputs, self.depths[3], [5, 5], strides=(2, 2), padding='SAME') outputs = leaky_relu(tf.layers.batch_normalization(outputs, training=training), name='outputs') with tf.variable_scope('conv4'): outputs = tf.layers.conv2d(outputs, self.depths[4], [5, 5], strides=(2, 2), padding='SAME') outputs = leaky_relu(tf.layers.batch_normalization(outputs, training=training), name='outputs') with tf.variable_scope('classify'): batch_size = outputs.get_shape()[0].value reshape = tf.reshape(outputs, [batch_size, -1]) outputs = tf.layers.dense(reshape, 2, name='outputs') self.reuse = True self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='d') return outputs
损失函数与训练
def loss(self, traindata): """build models, calculate losses. Args: traindata: 4-D Tensor of shape `[batch, height, width, channels]`. Returns: dict of each models' losses. """ generated = self.g(self.z, training=True) g_outputs = self.d(generated, training=True, name='g') t_outputs = self.d(traindata, training=True, name='t') # add each losses to collection tf.add_to_collection( 'g_losses', tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( labels=tf.ones([self.batch_size], dtype=tf.int64), logits=g_outputs))) tf.add_to_collection( 'd_losses', tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( labels=tf.ones([self.batch_size], dtype=tf.int64), logits=t_outputs))) tf.add_to_collection( 'd_losses', tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( labels=tf.zeros([self.batch_size], dtype=tf.int64), logits=g_outputs))) return { self.g: tf.add_n(tf.get_collection('g_losses'), name='total_g_loss'), self.d: tf.add_n(tf.get_collection('d_losses'), name='total_d_loss'), } def train(self, losses, learning_rate=0.0002, beta1=0.5): """ Args: losses dict. Returns: train op. """ g_opt = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1) d_opt = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1) g_opt_op = g_opt.minimize(losses[self.g], var_list=self.g.variables) d_opt_op = d_opt.minimize(losses[self.d], var_list=self.d.variables) with tf.control_dependencies([g_opt_op, d_opt_op]): return tf.no_op(name='train')
训练与运行
开始
2个epoch之后
5个epoch之后
OpenCV+tensorflow系统化学习路线图,推荐视频教程:
计算机视觉从入门到实战以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 你能区分真实人脸和AI生成的虚假人脸吗?
- 人工智能生成仿真人脸
- 深度有趣 | 08 DCGAN人脸图片生成
- 潮科技 | 生成对抗网络研究人脸识别领域获进展
- AI新威胁:刷新即可生成逼真而不存在的人脸
- 一键生成人脸像素图,还能上传到动森!这个项目很好玩
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Netty实战
诺曼·毛瑞尔(Norman Maurer)、马文·艾伦·沃尔夫泰尔(Marvin Allen Wolfthal) / 何品 / 人民邮电出版社 / 2017-5-1 / 69.00
编辑推荐 - Netty之父”Trustin Lee作序推荐 - 阿里巴巴中间件高级技术专家为本书中文版作序推荐 - 系统而详细地介绍了Netty的各个方面并附带了即用型的优质示例 - 附带行业一线公司的案例研究 - 极实用的Netty技术书 无论是构建高性能的Web、游戏服务器、推送系统、RPC框架、消息中间件还是分布式大数据处理引擎,都离不开Nett......一起来看看 《Netty实战》 这本书的介绍吧!