使用 Spell 实践深度学习,几乎零配置开始使用

栏目: 数据库 · 发布时间: 5年前

内容简介:简单说就是上传本地 git 仓库代码,然后上传到 Spell 运行的服务。可以做 GPU 的运算,其中 2 vCPUs , 4GB RAM 是免费的。这个是通过一个训练好的 Model 去给黑白图片上色。下载训练好的模型,这个下载会在 spell 的服务器上下载,不会存到本机:

Spell 介绍

简单说就是上传本地 git 仓库代码,然后上传到 Spell 运行的服务。可以做 GPU 的运算,其中 2 vCPUs , 4GB RAM 是免费的。

简单的操作流程

这个是通过一个训练好的 Model 去给黑白图片上色。

git clone https://github.com/richzhang/colorization.git
cd colorization

下载训练好的模型,这个下载会在 spell 的服务器上下载,不会存到本机:

# 执行 speel run 会上传当前 git 仓库的代码到服务器,然后在服务器运行下面的命令,有点类似 Saas。
spell run ./models/fetch_release_models.sh
# 列出下载好的模型文件。id=1 是前面执行命令返回的 id 。
spell ls runs/1/models

然后开始处理图片:

spell run -t K80 \
    --framework caffe \
    --apt python-tk \
    --pip scikit-image \
    --pip numpy \
    --pip matplotlib \
    --pip scipy \
    -m runs/1/models:/mnt/models \
    "python2 ./colorization/colorize.py \
        -img_in ./demo/imgs/ansel_adams3.jpg \
        -img_out ./out.png \
        --caffemodel /mnt/models/colorization_release_v2.caffemodel"

然后下载图片:

spell cp runs/2/out.png

上面的是 Spell 网站提供的例子,完整的教程: learn.spell.run/colorize_images

整个过程试了一下,还挺快的,处理一张图片大概 30s 左右。也可以用自己的图片,效果不错。

之后

然后看一下官方的文档, www.spell.run/docs/quickstart/ ,基本就明白所有的概念了。

之后可以直接去看看官方提供的另外一篇文章, 这里里面是 fast.ai 的官方教程,难度中等, learn.spell.run/fast_ai 。至于其它教程基本没必要看。

如果要使用 GPU 需要添加信用卡,因为 Spell 是按秒算费用的,所以给图片上色只用了半分钟,大概 0.01 美元吧。

可以去 web.spell.run 注册, 或者使用我的邀请链接,双方有 15 美元的额度, web.spell.run/refer/yantze


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

可计算性和计算复杂性

可计算性和计算复杂性

朱一清 / 国防工业出版社 / 2006-4 / 18.0

本书深入浅出地介绍了研究可计算性的四个主要模型以及四个模型彼此之间的关系:介绍了计算复杂性的基本概念和重要的研究方法与一些研究成果。内容涉及递归函数、图灵机、λ演算、马尔可夫算法、计算复杂度的分类、NP完全理论、非一致复杂性等。分述于十章,书中附有习题。 本书可作为广大有志于突破计算复杂性研究僵局——“P=NP?”的科技工作者,计算机科学和元计算机科学工作者,数学和元数学工作者以及大......一起来看看 《可计算性和计算复杂性》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具