内容简介:桃符早易朱红纸,杨柳轻摇翡翠群 ——FlyAI Couplets体验对对联Demo:
桃符早易朱红纸,杨柳轻摇翡翠群 ——FlyAI Couplets
体验对对联Demo: https://www.flyai.com/couplets
循环神经网络最重要的特点就是可以将序列作为输入和输出,而对联的上联和下联都是典型的序列文字,那么,能否使用神经网络进行对对联呢?答案是肯定的。本项目使用网络上收集的对联数据集地址作为训练数据,运用Seq2Seq + 注意力机制网络完成了根据上联对下联的任务。
项目流程
- 数据处理
- Seq2Seq + Attention 模型解读
- 模型代码实现
- 训练神经网络
数据处理
创建词向量字典和词袋字典
在原始数据集中,对联中每个汉字使用空格进行分割,格式如下所示:
室 内 崇 兰 映 日,林 间 修 竹 当 风 翠 岸 青 荷 , 琴 曲 潇 潇 情 辗 转,寒 山 古 月 , 风 声 瑟 瑟 意 彷 徨
由于每个汉字表示一个单一的词,因此不需要对原始数据进行分词。在获取原始数据之后,需要创建两个字典,分别是字到词向量的字典和字到词袋的字典,这样做是为了将词向量输入到网络中,而输出处使用词袋进行分类。在词袋模型中,添加三个关键字 ' “ ', ' ” ' 和 ' ~ ' ,分别代表输入输出的起始,结束和空白处的补零,其关键字分别为1,2,0。
class Processor(Base): ## Processor是进行数据处理的类 def __init__(self): super(Processor, self).__init__() embedding_path = os.path.join(DATA_PATH, 'embedding.json') ##加载词向量字典 words_list_path = os.path.join(DATA_PATH, 'words.json') ## 加载词袋列表 with open(embedding_path, encoding='utf-8') as f: self.vocab = json.loads(f.read()) with open(words_list_path, encoding='utf-8') as f: word_list = json.loads(f.read()) self.word2ix = {w:i for i,w in enumerate(word_list, start = 3)} self.word2ix['“'] = 1 ##句子开头为1 self.word2ix['”'] = 2 ##句子结尾为2 self.word2ix['~'] = 0 ##padding的内容为0 self.ix2word = {i:w for w,i in self.word2ix.items()} self.max_sts_len = 40 ##最大序列长度
对上联进行词向量编码
def input_x(self, upper): ##upper为输入的上联 word_list = [] #review = upper.strip().split(' ') review = ['“'] + upper.strip().split(' ') + ['”'] ##开头加符号1,结束加符号2 for word in review: embedding_vector = self.vocab.get(word) if embedding_vector is not None: if len(embedding_vector) == 200: # 给出现在编码词典中的词汇编码 embedding_vector = list(map(lambda x: float(x),embedding_vector)) ## convert element type from str to float in the list word_list.append(embedding_vector) if len(word_list) >= self.max_sts_len: word_list = word_list[:self.max_sts_len] origanal_len = self.max_sts_len else: origanal_len = len(word_list) for i in range(len(word_list), self.max_sts_len): word_list.append([0 for j in range(200)]) ## 词向量维度为200 word_list.append([origanal_len for j in range(200)]) ## 最后一行元素为句子实际长度 word_list = np.stack(word_list) return word_list
对真实下联进行词袋编码
def input_y(self, lower): word_list = [1] ##开头加起始符号1 for word in lower: word_idx = self.word2ix.get(word) if word_idx is not None: word_list.append(word_idx) word_list.append(2) ##结束加终止符号2 origanal_len = len(word_list) if len(word_list) >= self.max_sts_len: origanal_len = self.max_sts_len word_list = word_list[:self.max_sts_len] else: origanal_len = len(word_list) for i in range(len(word_list), self.max_sts_len): word_list.append(0) ## 不够长度则补0 word_list.append(origanal_len) ##最后一个元素为句子长度 return word_list
Seq2Seq + Attention 模型解读
Seq2Seq 模型可以被认为是一种由编码器和解码器组成的翻译器,其结构如下图所示:
编码器(Encoder)和解码器(Decoder)通常使用RNN构成,为提高效果,RNN通常使用LSTM或RNN,在上图中的RNN即是使用LSTM。Encoder将输入翻译为中间状态C,而Decoder将中间状态翻译为输出。序列中每一个时刻的输出由的隐含层状态,前一个时刻的输出值及中间状态C共同决定。
Attention 机制
在早先的Seq2Seq模型中,中间状态C仅由最终的隐层决定,也就是说,源输入中的每个单词对C的重要性是一样的。这种方式在一定程度上降低了输出对位置的敏感性。而Attention机制正是为了弥补这一缺陷而设计的。在Attention机制中,中间状态C具有了位置信息,即每个位置的C都不相同,第i个位置的C由下面的公式决定:
公式中,Ci代表第i个位置的中间状态C,Lx代表输入序列的全部长度,hj是第j个位置的Encoder隐层输出,而aij为第i个C与第j个h之间的权重。通过这种方式,对于每个位置的源输入就产生了不同的C,也就是实现了对不同位置单词的‘注意力’。权重aij有很多的计算方式,本项目中使用使用小型神经网络进行映射的方式产生aij。
模型代码实现
Encoder
Encoder的结构非常简单,是一个简单的RNN单元,由于本项目中输入数据是已经编码好的词向量,因此不需要使用nn.Embedding() 对input进行编码。
class Encoder(nn.Module): def __init__(self, embedding_dim, hidden_dim, num_layers=2, dropout=0.2): super().__init__() self.embedding_dim = embedding_dim #词向量维度,本项目中是200维 self.hidden_dim = hidden_dim #RNN隐层维度 self.num_layers = num_layers #RNN层数 self.dropout = dropout #dropout self.rnn = nn.GRU(embedding_dim, hidden_dim, num_layers=num_layers, dropout=dropout) self.dropout = nn.Dropout(dropout) #dropout层 def forward(self, input_seqs, input_lengths, hidden=None): # src = [sent len, batch size] embedded = self.dropout(input_seqs) # embedded = [sent len, batch size, emb dim] packed = torch.nn.utils.rnn.pack_padded_sequence(embedded, input_lengths) #将输入转换成torch中的pack格式,使得RNN输入的是真实长度的句子而非padding后的 #outputs, hidden = self.rnn(packed, hidden) outputs, hidden = self.rnn(packed) outputs, output_lengths = torch.nn.utils.rnn.pad_packed_sequence(outputs) # outputs, hidden = self.rnn(embedded, hidden) # outputs = [sent len, batch size, hid dim * n directions] # hidden = [n layers, batch size, hid dim] # outputs are always from the last layer return outputs, hidden
Attentation机制
Attentation权重的计算方式主要有三种,本项目中使用concatenate的方式进行注意力权重的运算。代码实现如下:
class Attention(nn.Module): def __init__(self, hidden_dim): super(Attention, self).__init__() self.hidden_dim = hidden_dim self.attn = nn.Linear(self.hidden_dim * 2, hidden_dim) self.v = nn.Parameter(torch.rand(hidden_dim)) self.v.data.normal_(mean=0, std=1. / np.sqrt(self.v.size(0))) def forward(self, hidden, encoder_outputs): # encoder_outputs:(seq_len, batch_size, hidden_size) # hidden:(num_layers * num_directions, batch_size, hidden_size) max_len = encoder_outputs.size(0) h = hidden[-1].repeat(max_len, 1, 1) # (seq_len, batch_size, hidden_size) attn_energies = self.score(h, encoder_outputs) # compute attention score return F.softmax(attn_energies, dim=1) # normalize with softmax def score(self, hidden, encoder_outputs): # (seq_len, batch_size, 2*hidden_size)-> (seq_len, batch_size, hidden_size) energy = torch.tanh(self.attn(torch.cat([hidden, encoder_outputs], 2))) energy = energy.permute(1, 2, 0) # (batch_size, hidden_size, seq_len) v = self.v.repeat(encoder_outputs.size(1), 1).unsqueeze(1) # (batch_size, 1, hidden_size) energy = torch.bmm(v, energy) # (batch_size, 1, seq_len) return energy.squeeze(1) # (batch_size, seq_len)
Decoder
Decoder同样是一个RNN网络,它的输入有三个,分别是句子初始值,hidden tensor 和Encoder的output tensor。在本项目中句子的初始值为‘“’代表的数字1。由于初始值tensor使用的是词袋编码,需要将词袋索引也映射到词向量维度,这样才能与其他tensor合并。完整的Decoder代码如下所示:
class Decoder(nn.Module): def __init__(self, output_dim, embedding_dim, hidden_dim, num_layers=2, dropout=0.2): super().__init__() self.embedding_dim = embedding_dim ##编码维度 self.hid_dim = hidden_dim ##RNN隐层单元数 self.output_dim = output_dim ##词袋大小 self.num_layers = num_layers ##RNN层数 self.dropout = dropout self.embedding = nn.Embedding(output_dim, embedding_dim) self.attention = Attention(hidden_dim) self.rnn = nn.GRU(embedding_dim + hidden_dim, hidden_dim, num_layers=num_layers, dropout=dropout) self.out = nn.Linear(embedding_dim + hidden_dim * 2, output_dim) self.dropout = nn.Dropout(dropout) def forward(self, input, hidden, encoder_outputs): # input = [bsz] # hidden = [n layers * n directions, batch size, hid dim] # encoder_outputs = [sent len, batch size, hid dim * n directions] input = input.unsqueeze(0) # input = [1, bsz] embedded = self.dropout(self.embedding(input)) # embedded = [1, bsz, emb dim] attn_weight = self.attention(hidden, encoder_outputs) # (batch_size, seq_len) context = attn_weight.unsqueeze(1).bmm(encoder_outputs.transpose(0, 1)).transpose(0, 1) # (batch_size, 1, hidden_dim * n_directions) # (1, batch_size, hidden_dim * n_directions) emb_con = torch.cat((embedded, context), dim=2) # emb_con = [1, bsz, emb dim + hid dim] _, hidden = self.rnn(emb_con, hidden) # outputs = [sent len, batch size, hid dim * n directions] # hidden = [n layers * n directions, batch size, hid dim] output = torch.cat((embedded.squeeze(0), hidden[-1], context.squeeze(0)), dim=1) output = F.log_softmax(self.out(output), 1) # outputs = [sent len, batch size, vocab_size] return output, hidden, attn_weight
在此之上,定义一个完整的Seq2Seq类,将Encoder和Decoder结合起来。在该类中,有一个叫做teacher_forcing_ratio的参数,作用为在训练过程中强制使得网络模型的输出在一定概率下更改为ground truth,这样在反向传播时有利于模型的收敛。该类中有两个方法,分别在训练和预测时应用。Seq2Seq类名称为Net,代码如下所示:
class Net(nn.Module): def __init__(self, encoder, decoder, device, teacher_forcing_ratio=0.5): super().__init__() self.encoder = encoder.to(device) self.decoder = decoder.to(device) self.device = device self.teacher_forcing_ratio = teacher_forcing_ratio def forward(self, src_seqs, src_lengths, trg_seqs): # src_seqs = [sent len, batch size] # trg_seqs = [sent len, batch size] batch_size = src_seqs.shape[1] max_len = trg_seqs.shape[0] trg_vocab_size = self.decoder.output_dim # tensor to store decoder outputs outputs = torch.zeros(max_len, batch_size, trg_vocab_size).to(self.device) # hidden used as the initial hidden state of the decoder # encoder_outputs used to compute context encoder_outputs, hidden = self.encoder(src_seqs, src_lengths) # first input to the decoder is the <sos> tokens output = trg_seqs[0, :] for t in range(1, max_len): # skip sos output, hidden, _ = self.decoder(output, hidden, encoder_outputs) outputs[t] = output teacher_force = random.random() < self.teacher_forcing_ratio output = (trg_seqs[t] if teacher_force else output.max(1)[1]) return outputs def predict(self, src_seqs, src_lengths, max_trg_len=30, start_ix=1): max_src_len = src_seqs.shape[0] batch_size = src_seqs.shape[1] trg_vocab_size = self.decoder.output_dim outputs = torch.zeros(max_trg_len, batch_size, trg_vocab_size).to(self.device) encoder_outputs, hidden = self.encoder(src_seqs, src_lengths) output = torch.LongTensor([start_ix] * batch_size).to(self.device) attn_weights = torch.zeros((max_trg_len, batch_size, max_src_len)) for t in range(1, max_trg_len): output, hidden, attn_weight = self.decoder(output, hidden, encoder_outputs) outputs[t] = output output = output.max(1)[1] #attn_weights[t] = attn_weight return outputs, attn_weights
训练神经网络
训练过程包括定义损失函数,优化器,数据处理,梯队下降等过程。由于网络中tensor型状为(sentence len, batch, embedding), 而加载的数据形状为(batch, sentence len, embedding),因此有些地方需要进行转置。
定义网络,辅助类等代码如下所示:
# 数据获取辅助类 data = Dataset() en=Encoder(200,64) ##词向量维度200,rnn隐单元64 de=Decoder(9133,200,64) ##词袋大小9133,词向量维度200,rnn隐单元64 network = Net(en,de,device) ##定义Seq2Seq实例 loss_fn = nn.CrossEntropyLoss() ##使用交叉熵损失函数 optimizer = Adam(network.parameters()) ##使用Adam优化器 model = Model(data)
训练过程如下所示:
lowest_loss = 10 # 得到训练和测试的数据 for epoch in range(args.EPOCHS): network.train() # 得到训练和测试的数据 x_train, y_train, x_test, y_test = data.next_batch(args.BATCH) # 读取数据; shape:(sen_len,batch,embedding) #x_train shape: (batch,sen_len,embed_dim) #y_train shape: (batch,sen_len) batch_len = y_train.shape[0] #input_lengths = [30 for i in range(batch_len)] ## batch内每个句子的长度 input_lengths = x_train[:,-1,0] input_lengths = input_lengths.tolist() #input_lengths = list(map(lambda x: int(x),input_lengths)) input_lengths = [int(x) for x in input_lengths] y_lengths = y_train[:,-1] y_lengths = y_lengths.tolist() x_train = x_train[:,:-1,:] ## 除去长度信息 x_train = torch.from_numpy(x_train) #shape:(batch,sen_len,embedding) x_train = x_train.float().to(device) y_train = y_train[:,:-1] ## 除去长度信息 y_train = torch.from_numpy(y_train) #shape:(batch,sen_len) y_train = torch.LongTensor(y_train) y_train = y_train.to(device) seq_pairs = sorted(zip(x_train.contiguous(), y_train.contiguous(),input_lengths), key=lambda x: x[2], reverse=True) #input_lengths = sorted(input_lengths, key=lambda x: input_lengths, reverse=True) x_train, y_train,input_lengths = zip(*seq_pairs) x_train = torch.stack(x_train,dim=0).permute(1,0,2).contiguous() y_train = torch.stack(y_train,dim=0).permute(1,0).contiguous() outputs = network(x_train,input_lengths,y_train) #_, prediction = torch.max(outputs.data, 2) optimizer.zero_grad() outputs = outputs.float() # calculate the loss according to labels loss = loss_fn(outputs.view(-1, outputs.shape[2]), y_train.view(-1)) # backward transmit loss loss.backward() # adjust parameters using Adam optimizer.step() print(loss) # 若测试准确率高于当前最高准确率,则保存模型 if loss < lowest_loss: lowest_loss = loss model.save_model(network, MODEL_PATH, overwrite=True) print("step %d, best lowest_loss %g" % (epoch, lowest_loss)) print(str(epoch) + "/" + str(args.EPOCHS))
小结
通过使用Seq2Seq + Attention模型,我们完成了使用神经网络对对联的任务。经过十余个周期的训练后,神经网络将会对出与上联字数相同的下联,但是,若要对出工整的对联,还需训练更多的周期,读者也可以尝试其他的方法来提高对仗的工整性。
体验对对联Demo: https://www.flyai.com/couplets
获取更多项目样例开源代码 请PC端访问: www.flyai.com
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 风云三尺剑,花鸟一床书---对联数据集和自动对联机器人
- 基于CNN和序列标注的对联机器人
- Simulink自动生成代码
- changelog 日志自动生成插件
- APIAuto 2.0.0 发布,机器学习自动化测试、自动生成代码和注释、自动静态检查...
- 深度有趣 | 23 歌词古诗自动生成
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
数据结构(C语言版)
严蔚敏、吴伟民 / 清华大学出版社 / 2012-5 / 29.00元
《数据结构》(C语言版)是为“数据结构”课程编写的教材,也可作为学习数据结构及其算法的C程序设计的参数教材。 本书的前半部分从抽象数据类型的角度讨论各种基本类型的数据结构及其应用;后半部分主要讨论查找和排序的各种实现方法及其综合分析比较。其内容和章节编排1992年4月出版的《数据结构》(第二版)基本一致,但在本书中更突出了抽象数据类型的概念。全书采用类C语言作为数据结构和算法的描述语言。 ......一起来看看 《数据结构(C语言版)》 这本书的介绍吧!
RGB HSV 转换
RGB HSV 互转工具
HEX CMYK 转换工具
HEX CMYK 互转工具