内容简介:Metrics的基本介绍可以参考之前的文章:Metrics-服务指标度量。本文简单介绍下如何将Metrics监控集成到我们的项目中。本文所使用的metrics-core为3.1.0版本。
Metrics的基本介绍可以参考之前的文章:Metrics-服务指标度量。
本文简单介绍下如何将Metrics监控集成到我们的项目中。
本文所使用的metrics-core为3.1.0版本。
<dependency> <groupId>io.dropwizard.metrics</groupId> <artifactId>metrics-core</artifactId> <version>3.1.0</version> </dependency> 复制代码
2、场景
我们的主要的监控需求有以下方面:
- 机器指标
内存、线程、硬盘、服务GC情况等基本信息是我们关心的核心指标。我们可以考虑通过 Gauge 指标项把这些机器指标做统一收集。
- 服务接口请求频率及耗时
请求频率及耗时是我们服务接口性能的核心指标,我们可以考虑通过 Timer 指标项来采集相关信息。
- 服务内部基本数据
在某些场景下我们将内部Service统计到的瞬时指标上报,如Web Filter里面统计当前正在处理的请求数等。我们也可以使用 Gauge 指标项来收集。
3、方案
针对于以上场景,我们虽然可以通过写代码的方式创建和注册相应的服务指标,可是在使用上却不太友好。如何更方便灵活地将Metrics指标统计集成到我们的项目中呢?
3.1、MetricSet自动注册,收集机器指标
- (1) 预先定义好MetricSet;
指标集合MetricSet可参看metrics-jvm库的 MemoryUsageGaugeSet 来定义,MemoryUsageGaugeSet定义了内存使用情况的基本指标,如下所示。
/** * A set of gauges for JVM memory usage, including stats on heap vs. non-heap memory, plus * GC-specific memory pools. */ public class MemoryUsageGaugeSet implements MetricSet { private static final Pattern WHITESPACE = Pattern.compile("[\\s]+"); private final MemoryMXBean mxBean; private final List<MemoryPoolMXBean> memoryPools; public MemoryUsageGaugeSet() { this(ManagementFactory.getMemoryMXBean(), ManagementFactory.getMemoryPoolMXBeans()); } public MemoryUsageGaugeSet(MemoryMXBean mxBean, Collection<MemoryPoolMXBean> memoryPools) { this.mxBean = mxBean; this.memoryPools = new ArrayList<MemoryPoolMXBean>(memoryPools); } @Override public Map<String, Metric> getMetrics() { final Map<String, Metric> gauges = new HashMap<String, Metric>(); gauges.put("total.init", new Gauge<Long>() { @Override public Long getValue() { return mxBean.getHeapMemoryUsage().getInit() + mxBean.getNonHeapMemoryUsage().getInit(); } }); gauges.put("total.used", new Gauge<Long>() { @Override public Long getValue() { return mxBean.getHeapMemoryUsage().getUsed() + mxBean.getNonHeapMemoryUsage().getUsed(); } }); gauges.put("total.max", new Gauge<Long>() { @Override public Long getValue() { return mxBean.getHeapMemoryUsage().getMax() + mxBean.getNonHeapMemoryUsage().getMax(); } }); gauges.put("total.committed", new Gauge<Long>() { @Override public Long getValue() { return mxBean.getHeapMemoryUsage().getCommitted() + mxBean.getNonHeapMemoryUsage().getCommitted(); } }); gauges.put("heap.init", new Gauge<Long>() { @Override public Long getValue() { return mxBean.getHeapMemoryUsage().getInit(); } }); gauges.put("heap.used", new Gauge<Long>() { @Override public Long getValue() { return mxBean.getHeapMemoryUsage().getUsed(); } }); gauges.put("heap.max", new Gauge<Long>() { @Override public Long getValue() { return mxBean.getHeapMemoryUsage().getMax(); } }); gauges.put("heap.committed", new Gauge<Long>() { @Override public Long getValue() { return mxBean.getHeapMemoryUsage().getCommitted(); } }); gauges.put("heap.usage", new RatioGauge() { @Override protected Ratio getRatio() { final MemoryUsage usage = mxBean.getHeapMemoryUsage(); return Ratio.of(usage.getUsed(), usage.getMax()); } }); gauges.put("non-heap.init", new Gauge<Long>() { @Override public Long getValue() { return mxBean.getNonHeapMemoryUsage().getInit(); } }); gauges.put("non-heap.used", new Gauge<Long>() { @Override public Long getValue() { return mxBean.getNonHeapMemoryUsage().getUsed(); } }); gauges.put("non-heap.max", new Gauge<Long>() { @Override public Long getValue() { return mxBean.getNonHeapMemoryUsage().getMax(); } }); gauges.put("non-heap.committed", new Gauge<Long>() { @Override public Long getValue() { return mxBean.getNonHeapMemoryUsage().getCommitted(); } }); gauges.put("non-heap.usage", new RatioGauge() { @Override protected Ratio getRatio() { final MemoryUsage usage = mxBean.getNonHeapMemoryUsage(); return Ratio.of(usage.getUsed(), usage.getMax()); } }); for (final MemoryPoolMXBean pool : memoryPools) { gauges.put(name("pools", WHITESPACE.matcher(pool.getName()).replaceAll("-"), "usage"), new RatioGauge() { @Override protected Ratio getRatio() { final long max = pool.getUsage().getMax() == -1 ? pool.getUsage().getCommitted() : pool.getUsage().getMax(); return Ratio.of(pool.getUsage().getUsed(), max); } }); } return Collections.unmodifiableMap(gauges); } } 复制代码
- (2) 通过 BeanPostProcessor 处理器自动注册MetricSet对象Bean;
public class UserDefinedMetricBeanPostProcessor implements BeanPostProcessor { private final Logger LOG = LoggerFactory.getLogger(getClass()); private final MetricRegistry metrics = MetricBeans.getRegistry(); @Override public Object postProcessBeforeInitialization(Object bean, String beanName) throws BeansException { return bean; } @Override public Object postProcessAfterInitialization(Object bean, String beanName) throws BeansException { if (bean instanceof MetricSet) { MetricSet metricSet = (MetricSet) bean; if (!canRegister(beanName)) { return bean; } String metricName; if (isJvmCollector(beanName)) { metricName = Config.getProjectPrefix() + "." + beanName; } else { //根据规则生成Metric的名字 metricName = Util.forMetricBean(bean.getClass(), beanName); } try { metrics.register(metricName, metricSet); LOG.debug("Registered metric named {} in registry. class: {}.", metricName, metricSet); } catch (IllegalArgumentException ex) { LOG.warn("Error injecting metric for field. bean named {}.", metricName, ex); } } return bean; } private boolean isJvmCollector(String beanName) { return beanName.indexOf("jvm") != -1; } private boolean canRegister(String beanName) { return !isJvmCollector(beanName) || Config.canJvmCollectorStart(); } } 复制代码
- (3) 在spring xml文件或通过spring注解定义bean对象;
<!--定义Jvm监控对象--> <bean id="jvm.memory" class="com.codahale.metrics.jvm.MemoryUsageGaugeSet"/> <!--自动添加用户定义的监控对象Metric--> <bean class="com.test.metrics.collector.UserDefinedMetricBeanPostProcessor"/> 复制代码
可以根据需要定制MetricSet集合,实现服务指标的自动注册及上报。
3.2、结合注解实现成员变量自动注册
我们可以结合注解实现成员变量的自动注册。在BeanPostProcessor可以获取到成员变量的注解,若是我们的目标注解,可以通过反射的方式获取到变量信息进行自动注册。
下面以Gauged注解为例说明,Gauged注解可以让成员变量自动注册并上报。
- (1) Gauged注解定义;
@Retention(RetentionPolicy.RUNTIME) @Target({ ElementType.METHOD, ElementType.FIELD, ElementType.ANNOTATION_TYPE }) public @interface Gauged { String name() default ""; } 复制代码
- (2) 使用 BeanPostProcessor 解析Gauge注解并注册;
核心代码如下所示:
protected void withField(final Object bean, String beanName, Class<?> targetClass, final Field field) { ReflectionUtils.makeAccessible(field); final Gauged annotation = field.getAnnotation(Gauged.class); final String metricName = Util.forGauge(targetClass, field, annotation); metrics.register(metricName, new Gauge<Object>() { @Override public Object getValue() { return ReflectionUtils.getField(field, bean); } }); LOG.debug("Created gauge {} for field {}.{}", metricName, targetClass.getCanonicalName(), field.getName()); } 复制代码
- (3) 在spring.xml文件定义对应 BeanPostProcessor 即可使用。
基本使用如下:
@Component public class GaugeUsage { @Gauged(name = "gaugeField") private int gaugedField = 999; } 复制代码
3.3、结合注解实现方法切面的拦截统计
基于Spring AOP可以实现接口调用的耗时统计。
下面以Timed注解为例,Timed注解可以统计接口方法耗时情况。
- (1) Timed注解定义;
@Retention(RetentionPolicy.RUNTIME) @Target({ ElementType.TYPE, ElementType.CONSTRUCTOR, ElementType.METHOD, ElementType.ANNOTATION_TYPE }) public @interface Timed { String name() default ""; } 复制代码
- (2) Timed注解切面定义;
@Component @Aspect public class MetricAspect { @Around("@annotation(timed)") public Object processTimerAnnotation(ProceedingJoinPoint joinPoint, Timed timed) throws Throwable { Class clazz = joinPoint.getTarget().getClass(); Method method = ((MethodSignature) joinPoint.getSignature()).getMethod(); String metricName = Util.forTimedMethod(clazz, method, timed); Timer timer = MetricBeans.timer(metricName); final Timer.Context context = timer.time(); try { return joinPoint.proceed(); } finally { context.stop(); } } } 复制代码
- (3) 在spring.xml文件定义MetricAspect即可实现带Timed注解接口的请求频率和耗时统计。
基本示例如下:
@Component public class TimedUsage { //@Timed注解会让监控组件创建Timer对象,统计该方法的执行次数和执行时间等指标 @Timed(name = "simple-timed-method") public void timedMethod() { for (int i = 0; i < 1000; i++) { } } } 复制代码
4、总结
当前我们主要通过 BenPostProcessor 和 Spring AOP 对类实例进行拦截,从而实现服务指标的自动注册和收集。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- WGCLOUD 监控系统更新,集成 ES 在线监控工具
- 日志监控实践:监控 Agent 集成 Lua 引擎实现多维度日志采集
- 分布式监控系统 WGCLOUD,集成 ES-HEAD 开源组件
- Plaid.com的监控系统如何实现与9600多家金融机构的集成
- Kube-OVN v0.8.0 支持网关高可用以及网络监控集成
- Kube-OVN 1.5.0 发布,容器 EIP、SFC 集成以及更多监控指标
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Squid: The Definitive Guide
Duane Wessels / O'Reilly Media / 2004 / $44.95 US, $65.95 CA, £31.95 UK
Squid is the most popular Web caching software in use today, and it works on a variety of platforms including Linux, FreeBSD, and Windows. Squid improves network performance by reducing the amount of......一起来看看 《Squid: The Definitive Guide》 这本书的介绍吧!