内容简介:原文链接:前面,我们学习了
原文链接: https://wangwei.one/posts/jav...
前面,我们学习了 链表 的实现,今天我们来学习链表的一个经典的应用场景——LRU淘汰算法。
缓存是一种提高数据读取性能的技术,在硬件设计、软件开发中都有着非常广泛的应用,比如常见的 CPU 缓存、数据库缓存、浏览器缓存等等。
缓存的大小有限,当缓存被用满时,哪些数据应该被清理出去,哪些数据应该被保留?这就需要缓存淘汰策略来决定。常见的策略有三种:先进先出策略 FIFO(First In,First Out) 、最少使用策略 LFU(Least Frequently Used) 、最近最少使用策略 LRU(Least Recently Used) ,本篇将介绍LRU策略算法。
LRU Cache
这一算法的核心思想是,当缓存数据达到预设的上限后,会优先淘汰掉近期最少使用的缓存对象。
思路
LRU淘汰算法涉及数据的添加与删除,出于性能考虑,采用链表来进行实现,思路如下:
- 维护一个双向链表用于存放缓存数据,越接近链表尾部的数据表示越少被使用到。
-
放入一个数据时,如果数据已存在则将其移动到链表头部,并更新Key所对应的Value值,如果不存在,则:
- 如果缓存容量已达到最大值,则将链表尾部节点删除掉,将新的数据放入链表头部;
- 如果缓存容量未达到最大值,则直接将新的数据放入链表头部;
-
查询一个数据时,遍历整个链表,如果能查询到对应的数据,则将其移动到链表头部;如果查询不到则返回
null;- 由于遍历链表的时间复杂度为
O(n),我们可以使用散列表HashMap来记录每个Key所对应的Node节点,将时间复杂度降为O(1)。
- 由于遍历链表的时间复杂度为
代码
package one.wangwei.algorithms.utils;
import java.util.HashMap;
import java.util.Map;
/**
* LRU Cache
*
* @author https://wangwei.one
* @date 2019/01/29
*/
public class LRUCache<K, V> {
private int capacity;
private Node head;
private Node tail;
private Map<K, Node> nodeMap;
public LRUCache(int capacity) {
this.capacity = capacity;
this.nodeMap = new HashMap<>(capacity);
}
/**
* Get Key
*
* @param key
* @return
*/
public V get(K key) {
Node existNode = nodeMap.get(key);
if (existNode == null) {
return null;
}
remove(existNode);
addFirst(existNode);
return existNode.value;
}
/**
* Add Key-Value
*
* @param key
* @param value
*/
public void put(K key, V value) {
Node existNode = nodeMap.get(key);
if (existNode == null) {
Node newNode = new Node(key, value);
if (nodeMap.size() >= capacity) {
removeLast();
}
addFirst(newNode);
}
else {
// update the value
existNode.value = value;
remove(existNode);
addFirst(existNode);
}
}
/**
* remove node
*
* @param node
*/
private void remove(Node node) {
Node prev = node.prev;
Node next = node.next;
if (prev == null) {
head = next;
} else {
prev.next = next;
}
if (next == null) {
tail = prev;
} else {
next.prev = prev;
}
nodeMap.remove(node.key);
}
/**
* add first node
*
* @param node
*/
private void addFirst(Node node) {
node.prev = null;
if (head == null) {
head = tail = node;
} else {
node.next = head;
head.prev = node;
head = node;
}
nodeMap.put(node.key, node);
}
/**
* remove last
*/
private void removeLast() {
if (tail == null) {
return;
}
// remove key from map
nodeMap.remove(tail.key);
// remove node from linked list
Node prev = tail.prev;
if (prev != null) {
prev.next = null;
tail = prev;
} else {
head = tail = null;
}
}
private class Node {
private K key;
private V value;
private Node prev;
private Node next;
private Node(K key, V value) {
this.key = key;
this.value = value;
}
}
}
LeetCode上相关的练习题: Leetcode 146. LRU Cache
性能测试:LeetCode上运行时间为 88ms ,超过了 43.42% 的 Java 代码。
以上所述就是小编给大家介绍的《数据结构与算法 | 如何实现LRU缓存淘汰算法》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 算法与数据结构之递归算法
- Python 数据结构与算法 —— 初识算法
- js实现数据结构及算法之排序算法
- 数据结构和算法面试题系列—递归算法总结
- 数据结构和算法面试题系列—随机算法总结
- 数据结构与算法——常用排序算法及其Java实现
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Haskell函数式编程基础
Simon Thompson / 科学出版社 / 2013-7-1 / 129.00
《Haskell函数式编程基础(第3版)》是一本非常优秀的Haskell函数式程序设计的入门书,各章依次介绍函数式程序设计的基本概念、编译器和解释器、函数的各种定义方式、简单程序的构造、多态和高阶函数、诸如数组和列表的结构化数据、列表上的原始递归和推理、输入输出的控制处理、类型分类与检测方法、代数数据类型、抽象数据类型、惰性计算等内容。书中包含大量的实例和习题,注重程序测试、程序证明和问题求解,易......一起来看看 《Haskell函数式编程基础》 这本书的介绍吧!