聊一聊rank-1和rank-5准确度

栏目: 数据库 · 发布时间: 5年前

内容简介:在我们看来,计算机就是一台严丝合缝、精密运转的机器,严格按照程序员下达的指令工作。虽然产品上线之后经常碰到迷之问题,但我们通常会检讨程序设计得不够完美,而不会认为这是理所当然。因为我们相信只要程序设计严谨,将各种意外情况考虑在内,就会消除这种不确定问题。然而到了机器学习,特别是深度学习,很多结果都是以概率的形式提供的。就拿图片分类来说,通常模型预测出图片属于每个类别的概率,而不是直接给出一个确定的结果。这就如同天气预报员预报明天的天气:晴天的概率多少多少,下雨的概率多少多少。估计如果这样预报天气,很多人会抓
聊一聊rank-1和rank-5准确度

在我们看来,计算机就是一台严丝合缝、精密运转的机器,严格按照 程序员 下达的指令工作。虽然产品上线之后经常碰到迷之问题,但我们通常会检讨程序设计得不够完美,而不会认为这是理所当然。因为我们相信只要程序设计严谨,将各种意外情况考虑在内,就会消除这种不确定问题。

然而到了机器学习,特别是深度学习,很多结果都是以概率的形式提供的。就拿图片分类来说,通常模型预测出图片属于每个类别的概率,而不是直接给出一个确定的结果。这就如同天气预报员预报明天的天气:晴天的概率多少多少,下雨的概率多少多少。估计如果这样预报天气,很多人会抓狂。问题是,天气预报说明天是晴天,明天就一定是晴天吗?这其实仍然是一个概率问题。虽然我们掌握了足够的气象资料,天气预报也越来越准确,但是我们依然无法保证每次都是准确的。

既然在深度学习中分类问题是各类别的概率,我们很容易选择一种策略:某个类别的概率最高,我们就认为预测结果属于哪种类别。比如下面这张蛙的图片:

聊一聊rank-1和rank-5准确度

使用CIFAR-10数据集训练出的模型进行推断,各个类别的概率如下:

聊一聊rank-1和rank-5准确度

其中,Frog类别的概率最大,我们就认为这张图片所属的类别为Frog。

计算模型准确度的方法也非常简单:

  • 步骤#1:计算数据集中每个输入图像的类别标签的概率。
  • 步骤#2:确定真实标签是否等于具有最大概率的预测类别标签。
  • 步骤#3:计算步骤#2为真的次数,然后除以总的测试图片数量。

这种度量也称之为rank-1准确度,这也是一种非常直观的度量方式。然而,最近几乎所有在ImageNet数据集上评估的机器学习模型的论文都不仅给出了rank-1准确度,还给出了rank-5准确度。

顾名思义,rank-5准确度选取5个最大概率的类别,只要这5个类别中的一个和真实标签相同,该预测结果就为真。rank-5准确度的计算方法如下:

  • 步骤#1:计算数据集中每个输入图像的类别标签的概率。
  • 步骤#2:按降序对预测的类别标签概率进行排序。
  • 步骤#3:确定真实标签是否存在于步骤#2的前5个预测标签中。
  • 步骤#4:计算步骤#3为真的次数,然后除以总的测试图片数量。

rank-1和rank-5的代码实现也非常简单:

def rank5_accuracy(preds, labels):
  # initialize the rank-1 and rank-5 accuracies
  rank1 = 0
  rank5 = 0

  # loop over the predictions and ground-truth labels
  for (p, gt) in zip(preds, labels):
    # sort the probabilities by their index in descending
    # order so that the more confident guesses are at the
    # front of the list
    p = np.argsort(p)[::-1]

    if gt in p[:5]:
      rank5 += 1

    if gt == p[0]:
      rank1 +=1

  # compute the final rank-1 and rank-5 accuracies
  rank1 /= float(len(labels))
  rank5 /= float(len(labels))

  return (rank1, rank5)
复制代码

有朋友可能会觉得,这个机器学习也太不靠谱了吧!不能给出一个精确的结果也就算了,还给出5个模凌两可的答案。在CIFAR-10这样的小数据集上,因为总的类别很少,如果还统计rank-5准确率,的确有点傻,但是考虑到ImageNet这样超大规模的数据集,其类别有成千上万个,特别是某些较小的类目,比如如下两张图片:

聊一聊rank-1和rank-5准确度

普通人也很难分辨出其类别不同。所以在某些大型图片分类模型任务中,rank-5准确率可以提供一个对rank-1准确率的一个补充。

理想情况下,rank-1准确度将与rank-5准确度同步增加,但是在具有挑战性的数据集上,情况并非总是如此。因此,我们还会检查rank-5的准确度,以确保我们的网络在rank-1准确度停滞不前时仍然在“学习”。

以上实例均有完整的代码,点击阅读原文,跳转到我在github上建的示例代码。

另外,我在阅读《Deep Learning for Computer Vision with Python》这本书,在微信公众号后台回复“计算机视觉”关键字,可以免费下载这本书的电子版。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

SSA:用户搜索心理与行为分析

SSA:用户搜索心理与行为分析

[美] 罗森菲尔德(Louis Rosenfeld) / 汤海、蔡复青 / 清华大学出版社 / 2014-4-1 / 59.00

何为站内搜索分析(SSA)?它如何帮助你挖掘用户搜索曰志,从中洞悉用户搜索心理和行为,从而有针对性地改善用户体验,提升网站价值?这些都可以从《SSA:用户搜索心理与行为分析》中找到答案。《SSA:用户搜索心理与行为分析》首先通过故事来说明SSA是如何使Vanguard集团起死回生的,简要介绍SSA并指导读者动手实践。其次,通过丰富的实例来介绍很多工具和方法,帮助读者着手分析用户查询数据,从中获得更......一起来看看 《SSA:用户搜索心理与行为分析》 这本书的介绍吧!

URL 编码/解码
URL 编码/解码

URL 编码/解码

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具