码农上工Java实战001-线程池ExecutorService

栏目: Java · 发布时间: 5年前

内容简介:执行一个异步任务你还只是如下new Thread吗?那你就太out了,new Thread的弊端如下:相比new Thread,Java提供的四种线程池的好处在于:

线程池ExecutorService

一. new Thread的弊端

执行一个异步任务你还只是如下new Thread吗?

new Thread(new Runnable() {
    @Override
    public void run() {
        // TODO Auto-generated method stub
    }
}).start();

那你就太out了,new Thread的弊端如下:

  1. 每次new Thread新建对象性能差。
  2. 线程缺乏统一管理,可能无限制新建线程,相互之间竞争,及可能占用过多系统资源导致死机或oom。
  3. 缺乏更多功能,如定时执行、定期执行、线程中断。

相比new Thread,Java提供的四种线程池的好处在于:

  1. 重用存在的线程,减少对象创建、消亡的开销,性能佳。
  2. 可有效控制最大并发线程数,提高系统资源的使用率,同时避免过多资源竞争,避免堵塞。
  3. 提供定时执行、定期执行、单线程、并发数控制等功能。

二. ExecutorService

Java通过Executors提供四种线程池,分别为:

  1. newCachedThreadPool创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。
  2. newFixedThreadPool 创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。
  3. newScheduledThreadPool 创建一个定长线程池,支持定时及周期性任务执行。
  4. newSingleThreadExecutor 创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。

ExecutorService 的submit() 与execute()区别

  1. 接收的参数不一样 submit()可以接受runnable和callable 有返回值execute()接受runnable 无返回值
  2. submit有返回值,而execute没有Method submit extends base method Executor.execute by creating and returning a Future that can be used to cancel execution and/or wait for completion.用到返回值的例子,比如说我有很多个做validation的task,我希望所有的task执行完,然后每个task告诉我它的执行结果,是成功还是失败,如果是失败,原因是什么。
  3. submit方便Exception处理There is a difference when looking at exception handling. If your tasks throws an exception and if it was submitted with execute this exception will Go to the uncaught exception handler (when you don’t have provided one explicitly, the default one will just print the stack trace to System.err). If you submitted the task with submit any thrown exception, checked or not, is then part of the task’s return status. For a task that was submitted with submit and that terminates with an exception, the Future.get will rethrow this exception, wrapped in an ExecutionException.意思就是如果你在你的task里会抛出checked或者unchecked exception,而你又希望外面的调用者能够感知这些exception并做出及时的处理,那么就需要用到submit,通过捕获Future.get抛出的异常。

    import java.util.ArrayList;

    import java.util.List;

    import java.util.Random;

    import java.util.concurrent.Callable;

    import java.util.concurrent.ExecutionException;

    import java.util.concurrent.ExecutorService;

    import java.util.concurrent.Executors;

    import java.util.concurrent.Future;

    public class ExecutorServiceTest {

    public static void main(String[] args) {  
        ExecutorService executorService = Executors.newCachedThreadPool();  
        List<Future<String>> resultList = new ArrayList<Future<String>>();  
    
        // 创建10个任务并执行  
        for (int i = 0; i < 10; i++) {  
            // 使用ExecutorService执行Callable类型的任务,并将结果保存在future变量中  
            Future<String> future = executorService.submit(new TaskWithResult(i));  
            // 将任务执行结果存储到List中  
            resultList.add(future);  
        }  
        executorService.shutdown();  
    
        // 遍历任务的结果  
        for (Future<String> fs : resultList) {  
            try {  
                System.out.println(fs.get()); // 打印各个线程(任务)执行的结果  
            } catch (InterruptedException e) {  
                e.printStackTrace();  
            } catch (ExecutionException e) {  
                executorService.shutdownNow();  
                e.printStackTrace();  
                return;  
            }  
        }  
    }

    }

    class TaskWithResult implements Callable<String> {

    private int id;  
    
    public TaskWithResult(int id) {  
        this.id = id;  
    }  
    
    /** 
     * 任务的具体过程,一旦任务传给ExecutorService的submit方法,则该方法自动在一个线程上执行。 
     *  
     * @return 
     * @throws Exception
*/  
    public String call() throws Exception {  
        System.out.println("call()方法被自动调用,干活!!!             " + Thread.currentThread().getName());  
        if (new Random().nextBoolean())  
            throw new TaskException("Meet error in task." + Thread.currentThread().getName());  
        // 一个模拟耗时的操作  
        for (int i = 999999999; i > 0; i--)  
            ;  
        return "call()方法被自动调用,任务的结果是:" + id + "    " + Thread.currentThread().getName();  
    }  
}  

class TaskException extends Exception {  
    public TaskException(String message) {  
        super(message);  
    }  
}

执行的结果类似于:

call()方法被自动调用,干活!!!             pool-1-thread-1 
call()方法被自动调用,干活!!!             pool-1-thread-2 
call()方法被自动调用,干活!!!             pool-1-thread-3 
call()方法被自动调用,干活!!!             pool-1-thread-5 
call()方法被自动调用,干活!!!             pool-1-thread-7 
call()方法被自动调用,干活!!!             pool-1-thread-4 
call()方法被自动调用,干活!!!             pool-1-thread-6 
call()方法被自动调用,干活!!!             pool-1-thread-7 
call()方法被自动调用,干活!!!             pool-1-thread-5 
call()方法被自动调用,干活!!!             pool-1-thread-8 
call()方法被自动调用,任务的结果是:0    pool-1-thread-1 
call()方法被自动调用,任务的结果是:1    pool-1-thread-2 
java.util.concurrent.ExecutionException: com.cicc.pts.TaskException: Meet error in task.pool-1-thread-3 
    at java.util.concurrent.FutureTask$Sync.innerGet(FutureTask.java:222) 
    at java.util.concurrent.FutureTask.get(FutureTask.java:83) 
    at com.cicc.pts.ExecutorServiceTest.main(ExecutorServiceTest.java:29) 
Caused by: com.cicc.pts.TaskException: Meet error in task.pool-1-thread-3 
    at com.cicc.pts.TaskWithResult.call(ExecutorServiceTest.java:57) 
    at com.cicc.pts.TaskWithResult.call(ExecutorServiceTest.java:1) 
    at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:303) 
    at java.util.concurrent.FutureTask.run(FutureTask.java:138) 
    at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) 
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) 
    at java.lang.Thread.run(Thread.java:619)

可以看见一旦某个task出错,其它的task就停止执行。

三、shotdown() showdownNow()区别

可以关闭 ExecutorService,这将导致其拒绝新任务。提供两个方法来关闭 ExecutorService。

shutdown() 方法在终止前允许执行以前提交的任务,

shutdownNow() 方法阻止等待任务启动并试图停止当前正在执行的任务。在终止时执行程序没有任务在执行,也没有任务在等待执行,并且无法提交新任务。关闭未使用的 ExecutorService 以允许回收其资源。

一般分两个阶段关闭 ExecutorService。第一阶段调用 shutdown 拒绝传入任务,然后调用 shutdownNow(如有必要)取消所有遗留的任务

// 启动一次顺序关闭,执行以前提交的任务,但不接受新任务。

threadPool.shutdown();

四、Runnable()与Callable()区别

如果是一个多线程协作程序,比如菲波拉切数列,1,1,2,3,5,8…使用多线程来计算。

但后者需要前者的结果,就需要用callable接口了。

callable用法和runnable一样,只不过调用的是call方法,该方法有一个泛型返回值类型,你可以任意指定。

runnable接口实现的没有返回值的并发编程。

这里写图片描述

callable实现的存在返回值的并发编程。(call的返回值String受泛型的影响) 使用Future获取返回值。

这里写图片描述

(1). newCachedThreadPool

创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。示例代码如下:

ExecutorService cachedThreadPool = Executors.newCachedThreadPool();

for (int i = 0; i < 10; i++) {

final int index = i;
try {
    Thread.sleep(index * 1000);
} catch (InterruptedException e) {
    e.printStackTrace();
}

cachedThreadPool.execute(new Runnable() {

    @Override
    public void run() {
        System.out.println(index);
    }
});

}

线程池为无限大,当执行第二个任务时第一个任务已经完成,会复用执行第一个任务的线程,而不用每次新建线程。

(2). newFixedThreadPool

创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。示例代码如下:

ExecutorService fixedThreadPool = Executors.newFixedThreadPool(3);

for (int i = 0; i < 10; i++) {

final int index = i;
fixedThreadPool.execute(new Runnable() {


    @Override
    public void run() {
        try {
            System.out.println(index);
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
    }
});

}

因为线程池大小为3,每个任务输出index后sleep 2秒,所以每两秒打印3个数字。

定长线程池的大小最好根据系统资源进行设置。如Runtime.getRuntime().availableProcessors()。可参考PreloadDataCache。

(3) newScheduledThreadPool

创建一个定长线程池,支持定时及周期性任务执行。延迟执行示例代码如下:

ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(5);

scheduledThreadPool.schedule(new Runnable() {

@Override
public void run() {
    System.out.println("delay 3 seconds");
}

}, 3, TimeUnit.SECONDS);

表示延迟3秒执行。

定期执行示例代码如下:

scheduledThreadPool.scheduleAtFixedRate(new Runnable() {

@Override
public void run() {
    System.out.println("delay 1 seconds, and excute every 3 seconds");
}

}, 1, 3, TimeUnit.SECONDS);

表示延迟1秒后每3秒执行一次。

ScheduledExecutorService比Timer更安全,功能更强大,后面会有一篇单独进行对比。

(4)、newSingleThreadExecutor

创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。示例代码如下:

ExecutorService singleThreadExecutor = Executors.newSingleThreadExecutor();

for (int i = 0; i < 10; i++) {

final int index = i;
singleThreadExecutor.execute(new Runnable() {

    @Override
    public void run() {
        try {
            System.out.println(index);
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
    }
});

}

结果依次输出,相当于顺序执行各个任务。

现行大多数GUI程序都是单线程的。Android中单线程可用于数据库操作,文件操作,应用批量安装,应用批量删除等不适合并发但可能IO阻塞性及影响UI线程响应的操作。

总结:

(1)使用ExecutorService的submit函数由于execute函数

(2)异常如何处理,异常后其他task停止


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

数据压缩导论

数据压缩导论

萨尤得 / 2009-2 / 99.00元

《数据压缩导论(英文版·第3版)》是数据压缩方面的经典著作,介绍了各种类型的压缩模式。书中首先介绍了基本压缩方法(包括无损压缩和有损压缩)中涉及的数学知识,为常见的压缩形式打牢了信息论基础,然后从无损压缩体制开始,依次讲述了霍夫曼编码、算术编码以及字典编码技术等,对于有损压缩,还讨论了使用量化的模式,描述了标量、矢量以及微分编码和分形压缩技术,最后重点介绍了视频加密。《数据压缩导论(英文版·第3版......一起来看看 《数据压缩导论》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具