内容简介:在處理完數以百計的政事後,受盡折磨的史蒂芙,打算回家好好地休息。 拖著疲倦的身軀,再也無法再容納任何一點複雜計算。從王宮走回寢居的路上, 發現身邊所見的事物都不再圓滑,看起來就像是粗糙的幾何多邊形構成的一切。打算享受著泡泡浴的史蒂芙,看著眼前的多邊形泡泡,失去原本應有的色澤,那透涼的心境更蒙上了一層灰影「為什麼是我呢?」感嘆道
在處理完數以百計的政事後,受盡折磨的史蒂芙,打算回家好好地休息。 拖著疲倦的身軀,再也無法再容納任何一點複雜計算。從王宮走回寢居的路上, 發現身邊所見的事物都不再圓滑,看起來就像是粗糙的幾何多邊形構成的一切。
打算享受著泡泡浴的史蒂芙,看著眼前的多邊形泡泡,失去原本應有的色澤,那透涼的心境更蒙上了一層灰影
「為什麼是我呢?」感嘆道
伸出手戳著眼前的泡泡,卻飄了過去
「區區的泡泡也跟我作對,嗚嗚」
將一個泡泡視為一個簡單多邊形 $A$ ,方便起見用一個序列 $a_0, a_1, ..., a_{n-1}$ 表示多邊形 $A$ 的每一個頂點,則會有 $n$ 個線段 $\overline{a_0 a_1}, \overline{a_1 a_2}, \cdots, \overline{a_{n-1} a_0}$ 。
解法
從能找到的論文「A Unified Approach to Dynamic Point Location, Ray Shooting, and Shortest Paths in Planar Maps」 得知操作更新 $\mathcal{O}(\log^3 n)$ ,詢問操作 $\mathcal{O}(\log n)$ ,這一個實作難度估計沒辦法在 10K 限制下完成 (代碼上傳長度上限)。
從動態梯形剖分開始,複雜度就相當高了,而論文後要有類似輕重鏈剖分的概念,將對偶圖產生的節點以輕重邊保存,接著再維護雙線輪廓,讓相連的連續重邊可以保存左右兩側的輪廓,… 資訊量龐大,想到一些可能未提及的邊界案例,實作相當困難。而從其他題目的經驗中,當設計到 $\mathcal{O}(\log^2 n)$ 的操作時,由於操作常數大,運行時間可能無法匹敵 $\mathcal{O}(\sqrt{n})$ 的算法。
那麼有沒有其他的替代方案,只需要跑得比暴力法還要快就行?特別小心,暴力法找一個點是否在多邊形內,需要 $\mathcal{O}(n)$ 的時間,且快取效果非常好,很容易做到 SIMD 的平行技術。
首先,解決維護多邊形點集序列,可以使用任何的平衡樹完成,若採用 splay tree 在均攤 $\text{Amortized} \; \mathcal{O}(\log n)$ 。使用 treap 也可以完成這類操作,還可以做到額外的持久化功能。接著,修改點的操作,可以轉換成替換一個點的下一個點,因此將點放在 KD tree 上,而維護下一個點相當於把每一個節點擴充成 BRH。
接著,當解決點是否在多邊形內時,可走訪 BRH 找射線穿過的交點個數,此時複雜度至少為 $\mathcal{O}(\sqrt{n} + k)$ ,其中 $k$ 為交點個數。我們可以額外維護多邊形的順逆時針來優化搜尋空間,最後一個接觸的線段方向,額外提供奇偶數來判斷該點是否在內側,然後把射線縮短到交點到詢問點之間。不斷地縮短搜尋空間下,大部分的情況為 $\mathcal{O}(\sqrt{n})$ ,拋開了原本存在的 $k$ 。
由於是封閉的簡單多邊形,所以當邊的疏密程度不一時,KD tree 轉換 BRH 會造成額外的負擔,bounding box 無法有效提供分割空間的功能。那麼在實際搜尋情況,額外走訪的節點與平面分布有關,這部分就不好分析。如果有更好的想法,歡迎分享。
現在實作動態 KD tree 必須有替罪羊樹 Scapegoat tree 的概念,再掛上 BRH 的想法,提供了相對有效率的動態方法來查詢點是否在多邊形內部。若把維護點序列的 splay tree 換成 treap,便可以做到持久化的動態幾何操作,這便是一開始想要的目標。
如果梯形剖分也可以持久化?暫時還不想去思考,那思考的容器要多大呢?
參考解法
#include<bits/stdc++.h>
using namespace std;
struct Mesh{
static const int MAXN = 1e5 + 5;
int pt[MAXN][2];
void read(int n){
for (int i = 0; i < n; i++)
scanf("%d %d", &pt[i][0], &pt[i][1]);
}
} mesh;
class SplayTree{
public:
struct Node{
Node *ch[2], *fa;
int size; int data;
Node() {
ch[0] = ch[1] = fa = NULL;
size = 1;
}
bool is_root(){
return fa->ch[0] != this && fa->ch[1] != this;
}
};
Node *root, *EMPTY;
void pushdown(Node *u){}
void pushup(Node *u){
if (u->ch[0] != EMPTY) pushdown(u->ch[0]);
if (u->ch[1] != EMPTY) pushdown(u->ch[1]);
u->size = 1 + u->ch[0]->size + u->ch[1]->size;
}
void setch(Node *p, Node *u,int i){
if (p != EMPTY) p->ch[i] = u;
if (u != EMPTY) u->fa = p;
}
SplayTree() {
EMPTY = new Node();
EMPTY->fa = EMPTY->ch[0] = EMPTY->ch[1] = EMPTY;
EMPTY->size = 0;
}
void init(){
root = EMPTY;
}
Node*newNode(){
Node *u = new Node();
u->fa = u->ch[0] = u->ch[1] = EMPTY;
return u;
}
void rotate(Node *x){
Node *y;
int d;
y = x->fa, d = y->ch[1] == x ? 1 : 0;
x->ch[d^1]->fa = y, y->ch[d] = x->ch[d^1];
x->ch[d^1] = y;
if (!y->is_root())
y->fa->ch[y->fa->ch[1] == y] = x;
x->fa = y->fa, y->fa = x;
pushup(y);
}
void deal(Node *x){
if (!x->is_root()) deal(x->fa);
pushdown(x);
}
void splay(Node *x, Node *below){
if (x == EMPTY) return ;
Node *y, *z;
deal(x);
while (!x->is_root() && x->fa != below) {
y = x->fa, z = y->fa;
if (!y->is_root() && y->fa != below) {
if (y->ch[0] == x ^ z->ch[0] == y)
rotate(x);
else
rotate(y);
}
rotate(x);
}
pushup(x);
if (x->fa == EMPTY) root = x;
}
Node*prevNode(Node *u){
splay(u, EMPTY);
return maxNode(u->ch[0]);
}
Node*nextNode(Node *u){
splay(u, EMPTY);
return minNode(u->ch[1]);
}
Node*minNode(Node *u){
Node *p = u->fa;
for (; pushdown(u), u->ch[0] != EMPTY; u = u->ch[0]);
splay(u, p);
return u;
}
Node*maxNode(Node *u){
Node *p = u->fa;
for (; pushdown(u), u->ch[1] != EMPTY; u = u->ch[1]);
splay(u, p);
return u;
}
Node*findPos(int pos){ // [0...]
for (Node *u = root; u != EMPTY;) {
pushdown(u);
int t = u->ch[0]->size;
if (t == pos) {
splay(u, EMPTY);
return u;
}
if (t > pos)
u = u->ch[0];
else
u = u->ch[1], pos -= t + 1;
}
return EMPTY;
}
tuple<int, int, int> insert(int data, int pos) { // make [pos] = data
Node *p, *q = findPos(pos);
Node *x = newNode(); x->data = data;
if (q == EMPTY) {
p = maxNode(root), splay(p, EMPTY);
setch(x, p, 0);
splay(x, EMPTY);
} else {
splay(q, EMPTY), p = q->ch[0];
setch(x, p, 0), setch(x, q, 1);
setch(q, EMPTY, 0);
splay(q, EMPTY);
p = prevNode(x);
}
if (p == EMPTY) p = maxNode(root);
if (q == EMPTY) q = minNode(root);
return make_tuple(p->data, data, q->data);
}
tuple<int, int, int> remove(int pos) {
Node *x = findPos(pos), *p, *q;
p = prevNode(x), q = nextNode(x);
if (p != EMPTY && q != EMPTY) {
setch(p, q, 1);
p->fa = EMPTY, splay(q, EMPTY);
} else if (p != EMPTY) {
p->fa = EMPTY, root = p;
} else {
q->fa = EMPTY, root = q;
}
int del = x->data;
free(x);
if (p == EMPTY) p = maxNode(root);
if (q == EMPTY) q = minNode(root);
return make_tuple(p->data, del, q->data);
}
int size(){
return root == EMPTY ? 0 : root->size;
}
} mlist;
static inline int log2int(int x){
return 31 - __builtin_clz(x);
}
static inline int64_t h(int p, int q){
return (int64_t) mesh.pt[p][0]*mesh.pt[q][1] - (int64_t) mesh.pt[p][1]*mesh.pt[q][0];
}
struct KDBRH{
static constexpr double ALPHA = 0.75;
static constexpr double LOG_ALPHA = log2(1.0 / ALPHA);
struct Pt{
int d[2];
Pt() {}
Pt(int xy[]):Pt(xy[0], xy[1]) {}
Pt(int x, int y) {d[0] = x, d[1] = y;}
bool operator==(const Pt &x) const {
return d[0] == x.d[0] && d[1] == x.d[1];
}
static Pt NaN(){return Pt(INT_MIN, INT_MIN);}
int isNaN(){return d[0] == INT_MIN;}
};
struct PtP{
Pt p, q;
PtP(Pt p, Pt q): p(p), q(q) {}
};
struct cmpAxis{
int k;
cmpAxis(int k): k(k) {}
bool operator()(const PtP &x, const PtP &y)const {
return x.p.d[k] < y.p.d[k];
}
};
struct BBox{
#defineKDMIN(a, b, c) {a[0] = min(b[0], c[0]), a[1] = min(b[1], c[1]);}
#defineKDMAX(a, b, c) {a[0] = max(b[0], c[0]), a[1] = max(b[1], c[1]);}
int l[2], r[2];
BBox() {}
BBox(int a[], int b[]) {
KDMIN(l, a, b); KDMAX(r, a, b);
}
void expand(Pt p){
KDMIN(l, l, p.d); KDMAX(r, r, p.d);
}
void expand(BBox b){
KDMIN(l, l, b.l); KDMAX(r, r, b.r);
}
inline int raycast(double x, double fx, double y){
return l[1] <= y && y <= r[1] && r[0] >= x && l[0] <= fx;
}
static BBox init(){
BBox b; b.l[0] = b.l[1] = INT_MAX, b.r[0] = b.r[1] = INT_MIN;
return b;
}
};
struct Node{
Node *lson, *rson;
Pt pt, qt;
BBox box;
int size; int8_t used;
Node() {}
void init(){
lson = rson = NULL;
size = 1, used = 1;
pt = qt = Pt::NaN();
}
bool hasBox(){ return box.l[0] <= box.r[0]; }
void pushup(){
size = used;
if (lson) size += lson->size;
if (rson) size += rson->size;
pushupBox();
}
void pushupBox(){
BBox t = BBox::init();
if (!qt.isNaN())
t.expand(pt), t.expand(qt);
if (lson && lson->hasBox())
t.expand(lson->box);
if (rson && rson->hasBox())
t.expand(rson->box);
box = t;
}
double interpolate(double y){
if (pt.d[1] == qt.d[1]) return pt.d[0];
return pt.d[0] + (qt.d[0] - pt.d[0]) * (y - pt.d[1]) / (qt.d[1] - pt.d[1]);
}
};
Node *root;
vector<PtP> A;
int64_t area;
Node _mem[262144];
int gc[262144], gci, memi;
Node*newNode(){
Node *u = gci >= 0 ? &_mem[gc[gci--]] : &_mem[memi++];
u->init();
return u;
}
void freeNode(Node *u){
gc[++gci] = u-_mem;
}
void init(){
root = NULL, area = 0;
gci = -1, memi = 0;
}
void insert(tuple<int,int,int> e){
int p, q, r; tie(p, q, r) = e;
insert(root, 0, Pt(mesh.pt[q]), Pt(mesh.pt[p]), log2int(size()) / LOG_ALPHA);
changeNode(root, 0, Pt(mesh.pt[r]), Pt(mesh.pt[q]));
area += h(p, q) + h(q, r) - h(p, r);
}
void remove(tuple<int,int,int> e){
int p, q, r; tie(p, q, r) = e;
remove(root, 0, Pt(mesh.pt[q]), log2int(size()) / LOG_ALPHA);
changeNode(root, 0, Pt(mesh.pt[r]), Pt(mesh.pt[p]));
area -= h(p, q) + h(q, r) - h(p, r);
}
int RAY_T;
double RAY_X;
vector<double> X;
int inside(double x, double y){
if (area == 0) return 0;
X.clear(), RAY_X = 1e+12, RAY_T = -1;
raycast(root, x, y);
if (RAY_T < 0)
return X.size()&1;
int pass = (area > 0) == RAY_T;
for (auto &x : X)
pass += x <= RAY_X;
return pass&1;
}
int size(){ return root == NULL ? 0 : root->size; }
inline int isbad(Node *u, Node *v){
if (u == root) return 1;
int l = v ? v->size : 0;
l = max(l, u->size-u->used-l);
return l > u->size * ALPHA;
}
Node*build(int k, int l, int r){
if (l > r) return NULL;
int mid = (l + r)>>1;
Node *ret = newNode();
sort(A.begin()+l, A.begin()+r+1, cmpAxis(k));
while (mid > l && A[mid].p.d[k] == A[mid-1].p.d[k])
mid--;
tie(ret->pt, ret->qt) = tie(A[mid].p, A[mid].q);
ret->lson = build(!k, l, mid-1);
ret->rson = build(!k, mid+1, r);
ret->pushup();
return ret;
}
void flatten(Node *u){
if (!u) return ;
flatten(u->lson);
flatten(u->rson);
if (u->used) A.emplace_back(u->pt, u->qt);
freeNode(u);
}
void changeNode(Node *u,int k, Pt x, Pt qt){
if (!u) return;
if (x == u->pt) {
u->qt = qt, u->pushupBox();
return;
}
changeNode(x.d[k] < u->pt.d[k] ? u->lson : u->rson, !k, x, qt);
u->pushupBox();
}
void rebuild(Node* &u,int k){
A.clear(), A.reserve(u->size);
flatten(u);
u = build(k, 0, A.size()-1);
}
bool insert(Node* &u,int k, Pt x, Pt y, int d){
if (!u) {
u = newNode(), u->pt = x, u->qt = y, u->pushup();
return d <= 0;
}
if (x == u->pt) {
u->used = 1, u->qt = y, u->pushup();
return d <= 0;
}
auto &v = x.d[k] < u->pt.d[k] ? u->lson : u->rson;
int t = insert(v, !k, x, y, d-1);
u->pushup();
if (t && !isbad(u, v))
return 1;
if (t) rebuild(u, k);
return 0;
}
bool remove(Node* &u,int k, Pt x, int d){
if (!u)
return d <= 0;
if (x == u->pt) {
if (u->lson || u->rson)
u->used = 0, u->qt = Pt::NaN(), u->pushup();
else
freeNode(u), u = NULL;
return d <= 0;
}
auto &v = x.d[k] < u->pt.d[k] ? u->lson : u->rson;
int t = remove(v, !k, x, d-1);
u->pushup();
if (t && !isbad(u, v))
return 1;
if (t) rebuild(u, k);
return 0;
}
inline int cast(Node *u,double x, double y){
if (u->qt.isNaN() || (u->pt.d[1] > y) == (u->qt.d[1] > y))
return 0;
double tx = u->interpolate(y);
if (tx <= x || tx > RAY_X)
return 0;
RAY_X = tx, RAY_T = u->pt.d[1] < u->qt.d[1];
X.emplace_back(tx);
return 1;
}
Node* stk[128];
void raycast(Node *u,double x, double y){
#definepushstk(u) {*p++ = u;}
Node **p = stk;
pushstk(u);
while (p > stk) {
u = *--p;
if (!u || !u->size || !u->box.raycast(x, RAY_X, y))
continue;
cast(u, x, y);
pushstk(u->rson);
pushstk(u->lson);
}
}
} mbrh;
int main(){
int n, m, cmd, x, pos;
double px, py;
scanf("%d %d", &n, &m);
mesh.read(n);
mlist.init(), mbrh.init();
for (int i = 0; i < m; i++) {
scanf("%d", &cmd);
if (cmd == 1) {
scanf("%d %d", &x, &pos);
mbrh.insert(mlist.insert(x, pos));
} else if (cmd == 2) {
scanf("%d", &x);
mbrh.remove(mlist.remove(x));
} else {
scanf("%lf %lf", &px, &py);
puts(mbrh.inside(px, py) ? "1" : "0");
}
}
return 0;
}
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Web Designer Idea
梁景红 / 电子工业出版社 / 2006年 / ¥55.00
这是一本以“目的、信息、设计、创意”作为根脉的关于网页视觉的书籍,畅谈的话题从策划到编辑再到设计,从而讨论“我们要建立怎样的站点,并以何种形式完成它”的问题。 全书共分四个部分,分别是网站建设目的,网站信息内容,页面形式设计,网页创作构思。 四部分有机地结合,形成一个统一的整体。“目的”部分以建设网站的目的为主,带领设计师从建站目的的角度,探讨如何抓住首要问题;如何建立网站雏形;如何打开狭隘的、局......一起来看看 《Web Designer Idea》 这本书的介绍吧!