内容简介:在了解那么何为之前写过的知识普及Hash
在了解 HashMap
之前,我们应该先明白两个概念: Hash
和 Map
,这可以帮助我们更容易了解 HashMap
的运行原理。
那么何为 Hash
,又何为 Map
呢?
Hash
之前写过的知识普及Hash
Map
Map是一种 K-V
形式的数据结构,一个唯一的key,会唯一对应一个value。也就是说,在Map容器里不允许两个一模一样的key。
一个简单的Map结构如下:
{ "key1":"value1", "key2":"value2", "key3":"value3" } 复制代码
对于这种数据结构,并且Map会对外提供一些方法来实现对内部数据的操作:
V put(K key, V value) V get(Object key) V remove(Object key) boolean containsKey(Object key) 复制代码
可见Map对于我们操作 K-V
形式的数据非常方便,实现的方式有很多,最简单粗暴的实现方式是使用 List
来存储每一个 K-V
组对,对于每种方法的实现只需要暴力循环碰撞即可,对于少量数据这种做法未必不可,如果数据量庞大之千万,我们就要换一种更加高效,速度更快的实现方式: HashMap
。
HashMap
Map在 Java 中的实现有很多, HashMap
便是其中之一,在 JDK
漫长的版本更新中, HashMap
的实现也是在不断的更新着:
- <=JDK1.7 :Table数组 + Entry链表
- >=JDK1.8 :Table数组 + Entry链表/红黑树
本文我们跳过JDK1.7的实现,来看一下1.8中 HashMap
源码所带来的魅力冲击!
实现原理
对于各个版本的 HashMap
实现原理,主线流程都是一成不变的:
这里有两个数据结构需要我们知道:
- Table :哈希表,存放Node元素。
- Node :结点元素,存放
K-V
组对信息,其结构是一个链表/红黑树。
另外,在HashMap内部有一些关键属性我们也要了解一下:
- DEFAULT_INITIAL_CAPACITY :Table数组初始长度,默认为
1 << 4
,2^4
= 16。 - MAXIMUM_CAPACITY :Table数组最高长度,默认为
1 << 30
,2^30
= 1073741824。 - DEFAULT_LOAD_FACTOR :负载因子,当总元素数 > 数组长度 * 负载因子时,Table数组将会扩容,默认为0.75。
- TREEIFY_THRESHOLD :树化阈值,当单个Table内Node数量超过该值,则会将链表转化为红黑树,默认为8。
- UNTREEIFY_THRESHOLD :链化阈值,当扩容期间单个Table内Entry数量小于该值,则将红黑树转化为链表,默认为6。
- MIN_TREEIFY_CAPACITY :最小树化阈值,当Table所有元素超过改值,才会进行树化(为了防止前期阶段频繁扩容和树化过程冲突)。
- size :Table数组当前所有元素数。
- threshold :下次扩容的阈值(数组长度 * 负载因子)
HashMap的内部有着一个Table数组,而这个数组的初始长度为 DEFAULT_INITIAL_CAPACITY
参数值,Table数组存放的元素类型就是Node,它是一个单向链表:
static class Node<K,V> implements Map.Entry<K,V> { final int hash; //key的hash值 final K key; //key V value; //value Node<K,V> next; //下一个结点 } 复制代码
每个Table中存的Node元素相当于链表的 header
, next
指向下一个结点,而这种链式结构的存在正是为了解决 hash冲突
:
hash冲突:两个元素的经过Hash散列之后分在同一个组内,我们将之解释为Hash冲突
在JDK1.7之前的版本,hash冲突的解决方法是将被冲突的Node结点放于一个链表中,而Table中的元素则是链头,当然在JDK1.8中,当Table中链长超过 TREEIFY_THRESHOLD
阈值后,将会将链表转变为红黑树的实现 TreeNode
:
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> { TreeNode<K,V> parent; // red-black tree links TreeNode<K,V> left; TreeNode<K,V> right; TreeNode<K,V> prev; // needed to unlink next upon deletion boolean red; } 复制代码
当发生hash冲突的Node不断变多,那么这个链将会越来越长,那么遍历碰撞key时的耗时就会不断增加,这也就直接导致了性能的不足,从JDK1.8开始,HashMap对于单个Table中的Node超出某个阈值时,将会开始树化操作(链表转化为红黑树),这对于搜索的性能将会有很大的提升,而插入和删除的操作所带来的性能影响微乎其微。
put方法
在 HashMap
的内部会有一个Table数组,这个数组的当前长度就是我们要实现映射的目标范围,当我们执行 put
方法时, key
和 value
要经历这些事情:
Hash
具体实现我们可以根据源码来详细了解一下:
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) // HashMap的懒加载策略,当执行put操作时检测Table数组初始化。 n = (tab = resize()).length; if ((p = tab[i = (n - 1) & hash]) == null) //通过``Hash``函数获取到对应的Table,如果当前Table为空,则直接初始化一个新的Node并放入该Table中。 tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) //输入的key命中了当前Table的首元素,直接更新。 e = p; else if (p instanceof TreeNode) //如果当前Node类型为TreeNode,调用``putTreeVal``方法。 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { //如果不是TreeNode,则就是链表,遍历并与输入key做命中碰撞。 for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { //如果当前Table中不存在当前key,则添加。 p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st //超过了``TREEIFY_THRESHOLD``则转化为红黑树。 treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) //做命中碰撞,使用hash、内存和equals同时判断(不同的元素hash可能会一致)。 break; p = e; } } if (e != null) { //如果命中不为空,更新操作。 V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) //扩容检测。 resize(); afterNodeInsertion(evict); return null; } 复制代码
对于其过程中的关于Node链表和红黑树的转换过程我们可以暂时屏蔽掉,那么整个流程并不是很绕,那么我们继续深入的来看一下HashMap的扩容实现。
resize方法
HashMap的扩容大致的实现是将老Table数组中所有的Entry取出来,重新对其hashcode做 Hash
散列到新的新的Table之中,也就是一个 re-put
的过程,具体还是通过源码来讲解:
final Node<K,V>[] resize() { //保留老的hash表 Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; //如果之前的容量大于0 if (oldCap > 0) { //如果超出最大容量 if (oldCap >= MAXIMUM_CAPACITY) { //扩容阈值为int最大值 threshold = Integer.MAX_VALUE; return oldTab; } //否则计算扩容后的阈值 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // 如果之前的容量等于0,并且之前的阈值大于零,则新的hash表长度就等于它 newCap = oldThr; else { // 初始阈值为零表示使用默认值 newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } //如果新的阈值为 0 ,就得用 新容量*加载因子 重计算一次 if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; //常见扩容后的hash表 @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; //A if (oldTab != null) { //遍历旧的hash表,将之内部元素转移到新的hash表 for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) //如果当前Table内只有一个元素,重新做hash散列并赋值 newTab[e.hash & (newCap - 1)] = e; //B else if (e instanceof TreeNode) //如果旧哈希表中这个位置的桶是树形结构,就要把新哈希表里当前桶也变成树形结构 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { //保留旧哈希表桶中链表的顺序 Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { //遍历当前Table内的Node,赋值给新的Table next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; } 复制代码
get方法
在我们看完HashMap对于put方法的实现之后,get方法则显得简单易懂,其代码与put相近无几,主要差别是没有了扩容和添加/更新的操作:
final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; //判断hash表是否为空,表重读是否大于零并且当前key对应分布的表内是否有Node存在 if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { if (first.hash == hash && ((k = first.key) == key || (key != null && key.equals(k)))) // 检测第一个Node,命中则不需要在做do...while...循环 return first; if ((e = first.next) != null) { if (first instanceof TreeNode) //如果Table内是树形结构,则使用对应的检索方法 return ((TreeNode<K,V>)first).getTreeNode(hash, key); do { //如果是链表,则做while循环,直到命中或者遍历结束 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; } 复制代码
containsKey方法
根据get方法的结果是否为空就可以直到是否包含该key:
public boolean containsKey(Object key) { return getNode(hash(key), key) != null; } 复制代码
remove方法
同样类似于put操作,首先会查找对应的key所在位置,如果为空,则不操作,反之,将之移除:
final Node<K,V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) { Node<K,V>[] tab; Node<K,V> p; int n, index; //判断hash表是否为空,表重读是否大于零并且当前key对应分布的表内是否有Node存在 if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) { Node<K,V> node = null, e; K k; V v; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) // 第一个Node命中 node = p; else if ((e = p.next) != null) { if (p instanceof TreeNode) //如果Table内是树形结构,则使用对应的检索方法 node = ((TreeNode<K,V>)p).getTreeNode(hash, key); else { do { //如果是链表,则做while循环,直到命中或者遍历结束 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { node = e; break; } p = e; } while ((e = e.next) != null); } } if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) { //如果命中到了对应的Node,则根据Node结构进行对应的移除操作 if (node instanceof TreeNode) ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable); else if (node == p) tab[index] = node.next; else p.next = node.next; ++modCount; //修改hash表元素数 --size; afterNodeRemoval(node); return node; } } return null; } 复制代码
为何线程不安全?
看完了HashMap的实现之后,就该谈一谈它为什么存在线程安全问题!
数据丢失
首先,我们将目光放在put方法的实现中,假设有两个线程在同时进行put操作,对应的数据分别为:
thread-1: put(1, 'abc'); thread-2: put(1, 'efg'); 复制代码
假设此时Hash表的长度为10,且已经有两个元素在,负载因子为默认值0.75f,那么操作过程一定不会扩容,并且两个线程put的key都是1,那么它们将会分配到同一个table中,下方代码为put方法中的其中一段,其主要作用是遍历当前表内Node,寻找与当前key一样的Node结点,之后再做添加/更新操作。
for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); // A if (binCount >= TREEIFY_THRESHOLD - 1) treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } 复制代码
假设两个线程同时执行到了 A
这个位置,此时获取到的 p
是统一个对象,下一刻,cpu运转,两个线程同时运行,那么 p.next
的值将会是最后一个线程put的value值,而前一个则会丢失,这就会导致丢数据的情况!
当然该情景同样会发生于 resize
和 remove
操作,至于为什么,大家可以思考一下!
size不准确
这个就很简单了,为什么不准确呢,来看一下size变量在HashMap内部的定义:
transient int size; 复制代码
内存不可见并且增减操作未加锁,多线程操作下属于非原子操作!
闭环死锁
这个问题在JDK1.8版本的HashMap中已经不存在了,至于为啥,我要先讲一下在1.8之前的HashMap为什么会存在闭环死锁问题!
从 闭环
这个名词上我们分析一下是什么问题,什么是闭环的,如果链表形成了一个环会不会就是闭环呢?而链表如何才会形成环?带着这些问题,我们在脑海中抽象出一个模型:
graph LR A-->B B-->A 复制代码
假设某一个Table中的Node链表发生了上述问题,那么我们在遍历时进行 do{ }while ((e = e.next) != null);
操作就会发生死锁的问题,那么看来我们的猜想方向是正确的,那么我们就具体分析一下HashMap在什么操作之中会产生闭环的问题,不过在此之前,我们要明白因果:
因:??? 果:闭环 复制代码
我们知道,只有当两个结点内部的 next
相互引用对方的时候才会死锁,这种场景只能在两个已经存在同一个链上的结点同时以 相反的方向
被操作 next
引用的时候才会发生,而在HashMap内部,符合这种场景的只有一个方法: resize
,那我们就来看一下JDK1.7的 resize
方法实现:
void resize(int newCapacity) { Entry[] oldTable = table; int oldCapacity = oldTable.length; if (oldCapacity == MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return; } Entry[] newTable = new Entry[newCapacity]; boolean oldAltHashing = useAltHashing; useAltHashing |= sun.misc.VM.isBooted() && (newCapacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD); boolean rehash = oldAltHashing ^ useAltHashing; //fu transfer(newTable, rehash); table = newTable; threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1); } 复制代码
进入 transfer
方法中,其内部实现了扩容过程:
void transfer(Entry[] newTable, boolean rehash) { int newCapacity = newTable.length; for (Entry<K,V> e : table) { // A while(null != e) { Entry<K,V> next = e.next; if (rehash) { e.hash = null == e.key ? 0 : hash(e.key); } int i = indexFor(e.hash, newCapacity); e.next = newTable[i]; newTable[i] = e; e = next; } } } 复制代码
我们发现,在JDK1.7的HashMap的扩容实现中,老的Table中的Node链的顺序赋值给新的Table中时的操作是反置的:
e.next = newTable[i]; newTable[i] = e; e = next; 复制代码
上述操作是将当前Node的next指针指向当前Table的头结点,之后当前Node又变为了Table的头结点,此时假设A、B两个线程同时执行到了 transfer
方法中的 A
位置,并且此时的 oldTable
和 newTable
的结构是这样的:
oldTable[] table-1: a -> b -> c -> null table-2: null table-3: null newTable[] table-1: null table-2: null table-3: null table-4: null table-5: null table-6: null 复制代码
如果很巧,两个线程在同一个CPU上执行,那么就会存在一个抢占时间片的场景,假设A先抢到了时间片,然后执行一番操作之后, oldTable
和 newTable
的结构如下:
oldTable[] table-1: a -> null table-2: null table-3: null newTable[] table-1: null table-2: c -> b -> a -> null table-3: null table-4: null table-5: null table-6: null 复制代码
之后还没等它做 oldTable = newTable
操作,B抢到了时间片,并也做了同样一番操作, oldTable
和 newTable
的结构如下:
oldTable[] table-1: a -> null table-2: null table-3: null newTable[] table-1: null table-2: a -> c -> b -> a table-3: null table-4: null table-5: null table-6: null 复制代码
此时A或者B谁先 oldTable = newTable
已经无所谓了,因为 newTable
中已经产生了闭环,之后在进行get或者put操作时,如果不小心触发到了while循环,那将会一直死循环:
do{ //do some thing }while ((e = e.next) != null); //e = e.next将会永不为空 复制代码
从上述场景产生的过程中我们发现, a -> c -> b -> a
这种闭环问题的罪魁祸首是因为1.7中的HashMap在扩容时为了免去再次遍历链表,很聪明的将当前结点作为新链表的头结点,这就会导致顺序反转,所以无序化导致了闭环的产生,而这种问题不仅仅是在HashMap中体现,Mysql的死锁问题的原因常常也是因为反序加行锁导致的!
而在开头说过,JDK1.8已经避免了这个问题,这是为什么呢?看下代码就知道了:
else { // preserve order Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; //A } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; //B } } 复制代码
同样是扩容的操作,JDK1.8中的HashMap通过两个链分别去存储头结点和尾结点以保证它有序,并且不会频繁的去赋值 newTable
,而是在循环之后直接赋值(请注意A、B标记处),这样就非常简单的避免了产生闭环的陷阱!
以上所述就是小编给大家介绍的《数据结构学习系列之从源码来看HashMap》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 【以太坊源码解析】-区块数据结构
- 数据结构学习系列之从源码来看ArrayList
- 兄弟连区块链教程eth源码解析区块数据结构
- react源码ReactTreeTraversal.js之数据结构与算法
- redis源码阅读之底层数据结构intset整型集合
- Redis 源码阅读之底层数据结构 intset 整型集合
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Programming From The Ground Up
Jonathan Bartlett / Bartlett Publishing / 2004-07-31 / USD 34.95
Programming from the Ground Up is an introduction to programming using assembly language on the Linux platform for x86 machines. It is a great book for novices who are just learning to program as wel......一起来看看 《Programming From The Ground Up》 这本书的介绍吧!