图说十大数据挖掘算法(一)K最近邻算法

栏目: 数据库 · 发布时间: 5年前

内容简介:用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。如果你之前没有学习过K最近邻算法,那今天几张图,让你明白什么是K最近邻算法。

图说十大数据挖掘算法(一)K最近邻算法

用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。

如果你之前没有学习过K最近邻算法,那今天几张图,让你明白什么是K最近邻算法。

图说开始

先来一张图,请分辨它是什么水果

图说十大数据挖掘算法(一)K最近邻算法

很多同学不假思索,直接回答:“菠萝”!!!

仔细看看同学们,这是菠萝么?那再看下边这这张图。

图说十大数据挖掘算法(一)K最近邻算法

这两个水果又是什么呢?

这就是菠萝与凤梨的故事,下边即将用菠萝和凤梨,给大家讲述怎么用一个算法来知道这是个什么水果的过程,也就是什么是K最近邻算法。

(给非吃货同学们补充一个生活小常识,菠萝的叶子有刺,凤梨没有。菠萝的凹槽处是黄色的,而凤梨的凹槽处是绿色的,以后千万不要买错哦!!!)

图说十大数据挖掘算法(一)K最近邻算法

上边这张图中,我们定义了两个维度的特征:

  • 一个是叶子是否有刺

  • 一个是凹槽处是否的颜色

问:一个新的水果来了,我们怎么判断他是什么水果呢?

图说十大数据挖掘算法(一)K最近邻算法

方法如下:

图说十大数据挖掘算法(一)K最近邻算法

(看这个神秘水果与哪个水果的举例近。同等举例,看离它最近的水果中,哪个水果多)

根据上图中,我们判断,这个神秘水果那就是菠萝啦,原因是离它近的水果中菠萝比凤梨多。

相信到这里,大家都已经明白了什么是K最近邻算法了吧!

下边来具体学习一下距离的计算

假设我们有3中不知名的水果

图说十大数据挖掘算法(一)K最近邻算法

我们现在根据其大小和颜色的特征,把它们放入图表中

图说十大数据挖掘算法(一)K最近邻算法

那如我们如何判断他们有多像呢?

图说十大数据挖掘算法(一)K最近邻算法

具体的计算,可以使用毕达哥拉斯公式

图说十大数据挖掘算法(一)K最近邻算法

那现在来计算水果A和水果B之间的距离

图说十大数据挖掘算法(一)K最近邻算法

图说十大数据挖掘算法(一)K最近邻算法

最后的计算结果为1

那么同理,如果要让你去做一个推荐系统,我们可以把人的用户画像放在一个表格里

图说十大数据挖掘算法(一)K最近邻算法

如果我们给其中一个人推荐他可能感兴趣的书、电影、美食等,就可以看一下离他最近距离的这些人都在做什么,然后就套用下边的公式就可以了

图说十大数据挖掘算法(一)K最近邻算法

无论多少维度,直接套用就可以了。

图说算法,是不是非常的简单就理解了KNN。

祝大家学习愉快,欢迎转发。


以上所述就是小编给大家介绍的《图说十大数据挖掘算法(一)K最近邻算法》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

数字民主的迷思

数字民主的迷思

[美] 马修·辛德曼 / 唐杰 / 中国政法大学出版社 / 2015-12-25 / CNY 39.00

马修·辛德曼著的《数字民主的迷思》主要讨论互联网对美国政治的影响,聚焦的是“民主化”这一课题。针对公众关于网络民主的美好想象与过分狂热,它通过对在线竞选、链接结构、流量模式、搜索引擎使用、博客与博主、内容生产的“规模经济”等主题的深入处理,借助大量数据图表与分析,勾勒出互联网政治的种种局限性。尤其表明,网络政治信息仍然为一小群精英与机构所创造和过滤,在网络的每一个层次和领域都仍然遵循着“赢家通吃”......一起来看看 《数字民主的迷思》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换