MJiOS底层笔记--OC对象本质
栏目: Objective-C · 发布时间: 6年前
内容简介:小码哥iOS底层原理班--MJ老师的课确实不错,强推一波。基于C与C++结构体实现OC ==> C++ ==> 汇编 ==> 机器语言
小码哥iOS底层原理班--MJ老师的课确实不错,强推一波。
OC对象本质
基于C与C++结构体实现
OC语言如何被编译器编译:
OC ==> C++ ==> 汇编 ==> 机器语言
而在C++中只有 struct(结构体) 才能容纳不同类型的内容( 比如不同属性 )。
将Objective-C代码转换为C\C++代码
-
clang -rewrite-objc OC源文件 -o 输出的CPP文件
将源文件转写成通用的cpp文件
-
xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc OC源文件 -o 输出的CPP文件
通过Xcode将源文件转写成arm64架构下的iphoneos文件,文件内容比第一种要少
- 如果需要链接其他框架,使用-framework参数。比如-framework UIKit
NSObject的OC与C++定义
- 在OC中的定义
@interface NSObject <NSObject> {
Class isa;
}
复制代码
- 转成C++之后的定义
struct NSObject_IMPL {
Class isa;
};
复制代码
其中 isa 是指向 objc_class 结构体的 指针
// 指针 typedef struct objc_class *Class; 复制代码
而一个指针在64位系统中所占的内存为8字节
所以一个OC对象所占的内存至少为8字节
NSObject对象所占用内存的大小
上面的结论通过 class_getInstanceSize 函数也可以佐证:
#import <objc/runtime.h>
/*
获得NSObject实例对象的
`成员变量`
所占用的大小 >> 8
*/
NSLog(@"%zd", class_getInstanceSize([NSObject class]));
//runtime源码中
size_t class_getInstanceSize(Class cls)
{
if (!cls) return 0;
return cls->alignedInstanceSize();
}
// Class's ivar size rounded up to a pointer-size boundary.
uint32_t alignedInstanceSize() {
return word_align(unalignedInstanceSize());
}
复制代码
需要注意这个 word_align 返回的是内存对齐后的大小,以 unalignedInstanceSize (为对齐的)大小作为参数。
而对于 NSObject *obj 指针,我们有另一个函数可以查看其实际被分配的内存大小
#import <malloc/malloc.h> // 获得obj指针所指向内存的大小 >> 16 NSLog(@"%zd", malloc_size((__bridge const void *)obj)); 复制代码
为什么8字节的结构体会被分配16字节
继续看runtime
+ (id)alloc {
return _objc_rootAlloc(self);
}
id _objc_rootAlloc(Class cls)
{
return callAlloc(cls, false/*checkNil*/, true/*allocWithZone*/);
}
static ALWAYS_INLINE id
callAlloc(Class cls, bool checkNil, bool allocWithZone=false)
{
if (slowpath(checkNil && !cls)) return nil;
#if __OBJC2__
if (fastpath(!cls->ISA()->hasCustomAWZ())) {
// No alloc/allocWithZone implementation. Go straight to the allocator.
// fixme store hasCustomAWZ in the non-meta class and
// add it to canAllocFast's summary
if (fastpath(cls->canAllocFast())) {
// No ctors, raw isa, etc. Go straight to the metal.
bool dtor = cls->hasCxxDtor();
id obj = (id)calloc(1, cls->bits.fastInstanceSize());
if (slowpath(!obj)) return callBadAllocHandler(cls);
obj->initInstanceIsa(cls, dtor);
return obj;
}
else {
// Has ctor or raw isa or something. Use the slower path.
id obj = class_createInstance(cls, 0);
if (slowpath(!obj)) return callBadAllocHandler(cls);
return obj;
}
}
#endif
// No shortcuts available.
if (allocWithZone) return [cls allocWithZone:nil];
return [cls alloc];
}
// Replaced by ObjectAlloc
+ (id)allocWithZone:(struct _NSZone *)zone {
return _objc_rootAllocWithZone(self, (malloc_zone_t *)zone);
}
id _objc_rootAllocWithZone(Class cls, malloc_zone_t *zone)
{
id obj;
#if __OBJC2__
// allocWithZone under __OBJC2__ ignores the zone parameter
(void)zone;
obj = class_createInstance(cls, 0);
#else
if (!zone) {
obj = class_createInstance(cls, 0);
}
else {
obj = class_createInstanceFromZone(cls, 0, zone);
}
#endif
if (slowpath(!obj)) obj = callBadAllocHandler(cls);
return obj;
}
id class_createInstance(Class cls, size_t extraBytes)
{
return _class_createInstanceFromZone(cls, extraBytes, nil);
}
static __attribute__((always_inline))
id
_class_createInstanceFromZone(Class cls, size_t extraBytes, void *zone,
bool cxxConstruct = true,
size_t *outAllocatedSize = nil)
{
if (!cls) return nil;
assert(cls->isRealized());
// Read class's info bits all at once for performance
bool hasCxxCtor = cls->hasCxxCtor();
bool hasCxxDtor = cls->hasCxxDtor();
bool fast = cls->canAllocNonpointer();
size_t size = cls->instanceSize(extraBytes);
if (outAllocatedSize) *outAllocatedSize = size;
id obj;
if (!zone && fast) {
obj = (id)calloc(1, size);
if (!obj) return nil;
obj->initInstanceIsa(cls, hasCxxDtor);
}
else {
if (zone) {
obj = (id)malloc_zone_calloc ((malloc_zone_t *)zone, 1, size);
} else {
obj = (id)calloc(1, size);
}
if (!obj) return nil;
// Use raw pointer isa on the assumption that they might be
// doing something weird with the zone or RR.
obj->initIsa(cls);
}
if (cxxConstruct && hasCxxCtor) {
obj = _objc_constructOrFree(obj, cls);
}
return obj;
}
size_t instanceSize(size_t extraBytes) {
size_t size = alignedInstanceSize() + extraBytes;
// CF requires all objects be at least 16 bytes.
if (size < 16) size = 16;
return size;
}
复制代码
alloc函数最终会根据 instanceSize 返回的 size ,然后使用 calloc(1, size); 函数去分配内存。
在 instanceSize 函数中, alignedInstanceSize 方法为成员变量所占内存大小(
上面已经贴过一次
). extraBytes 参数(
据我所见
)都为0。
而 CoreFoundation 框架在 instanceSize 函数中硬性规定不足16字节的内存地址会被补成16位字节。
但实际上, NSObject 对象只使用了 8字节 用来存储 isa 指针
Student对象的本质
@interface Student : NSObject
{
@public
int _no;
int _age;
}
@end
复制代码
重写成C++之后
struct Student_IMPL {
struct NSObject_IMPL NSObject_IVARS;
int _no;
int _age;
};
struct NSObject_IMPL {
Class isa;
};
//其实就是
struct Student_IMPL {
Class isa; //8字节
int _no; //4字节
int _age; //4字节
};
复制代码
所以一个 OC对象的本质 实际上是一个包含了 所有父类成员变量 + 自身成员变量 的结构体
Student的内存布局及大小
可以通过Debug->Debug workflow->View momory查看指定地址的结构来查证
对于Student实例对象所占内存地址的大小,我们同样可以通过 malloc_size 函数来确定。
结果是16。8字节父类的isa指针、4字节_age的int、4字节_no的int。
当然如果有兴趣可以用 memory write (stu地址+8偏移量) 8 的方式,通过直接修改内存的方式对成员变量 _no 的值进行修改。
需要注意的一点是:
Student_IMPL 结构体中的 NSObject_IMPL 结构体就已经占据了16个字节。 _no 与 _age 两个成员变量只是将 NSObject_IMPL 未利用的8个字节分别利用了而已。
内存对齐原则下的OC对象内存分配
alignedInstanceSize()函数的内存对齐
alignedInstanceSize() 函数会按照所有成员变量中内存最长的一个做内存对齐。比如
@interface Animal: NSObject
{
int weight;
int height;
int age;
}
复制代码
实际上只需要 8+4+4+4=20 个字节长度即可,但是内存对其之后会返回 8*3=24
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- NSObject 底层本质
- KVO 底层本质
- IOS 底层原理 类的本质--(2)
- IOS 底层原理 对象的本质--(1)
- iOS底层原理总结 - 探寻Runtime本质(三)
- 窥探iOS底层实现--OC对象的本质(二)
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Namo Webeditor5.5一看就懂.
吳聲毅 / 金禾資訊 / 20040214 / NT$ 169
一看就懂系列書全以初學者的角度切入,全書以STEP BY STEP方式撰寫,並以豐富的圖片搭配教學,在最後更加上日常生活實例運用講解,一路學來一氣呵成。為了增進學習的效率更採用高級紙品全彩印刷,這麼好的書,您還在等什麼,一看就懂系列書保證是您最佳入門學習好伙伴。 本書特色: 1、一看就懂:Step by Step操作詳盡說明、讓您一看就懂 2、精選範例:精彩實務範例生動活......一起来看看 《Namo Webeditor5.5一看就懂.》 这本书的介绍吧!