内容简介:这里记录平时使用gdb调试内核KE的步骤和方法. 有不足的地方也请大家指出和完善.1 必备工具和文件Gdb,addr2line,vmlinux以及内核coredump文件
这里记录平时使用gdb调试内核KE的步骤和方法. 有不足的地方也请大家指出和完善.
1 必备 工具 和文件
Gdb,addr2line,vmlinux以及内核coredump文件
在64位平台,gdb和addr2line 分别使用aarch64-linux-android-gdb
aarch64-linux-android-addr2line.
2. 调试过程
MTK平台coredump文件名为: SYS_MINI_RDUMP,用GAT工具解析DB文件得到.
2.1 启动GDB
aarch64-linux-android-gdb vmlinux coredump
aarch64-linux-android-gdb ./vmlinux./aee_exp_backup/db.fatal.00.KE/20151107_170222_178/db.fatal.00.KE.dbg.DEC/SYS_MINI_RDUMP
控制台输出内容:
#0 0xffffffc00088d2c8 in eth_start_xmit(skb=0xffffffc023ba8300, net=0xffffffc06d3d2000)
at kernel-3.10/drivers/usb/gadget/u_ether.c:893
(gdb)
可以看出异常点在u__ether.c文件893行.
2.2 gdb常用指令
bt : 打印堆栈调用信息.
down : 跳转到下一级FP指针
up : 回到上一级FP指针
P : 打印变量值
x : 打印内存内容
x / (n,f,u为可选参数)
n: 需要显示的内存单元个数,也就是从当前地址向后显示几个内存单元的内容,一个内存单元的大小由后面的u定义
f:显示格式
x(hex) 按十六进制格式显示变量。
d(decimal) 按十进制格式显示变量。
u(unsigned decimal) 按十进制格式显示无符号整型。
o(octal) 按八进制格式显示变量。
t(binary) 按二进制格式显示变量。
a(address) 按十六进制格式显示变量。
c(char) 按字符格式显示变量。
f(float) 按浮点数格式显示变量
u:每个单元的大小,按字节数来计算。默认是4 bytes。GDB会从指定内存地址开始读取指定字节,并把其当作一个值取出来,并使用格式f来显示
b:1 byte h:2 bytes w:4 bytes g:8 bytes
比如x/3uh 0x54320表示从内存地址0x54320读取内容,h表示以双字节为单位,3表示输出3个单位,u表示按照十六进制显示。
list : 以 c语言 列出当前函数内容(c语言)
disassemble :以汇编方式列出当前函数内容
2.3 异常点分析
可以从last_kmsg或者db文件解析出的SYS_KERNEL_LOG中得知异常类型.重要信息为PC和寄存器值.
Unable to handle kernel NULL pointerdereference at virtual address 000000e4
[6464.203080]<0>-(0)[3:ksoftirqd/0]PC is at eth_start_xmit+0x1fc/0x748
[6464.203112]<0>-(0)[3:ksoftirqd/0]LR is at eth_start_xmit+0x1d8/0x748
[6464.203143]<0>-(0)[3:ksoftirqd/0]pc : [
[6464.203168]<0>-(0)[3:ksoftirqd/0]sp : ffffffc071877b40
[ 6464.203192]<0>-(0)[3:ksoftirqd/0]x29:ffffffc071877b40 x28: 00000000000005bc
[6464.203231]<0>-(0)[3:ksoftirqd/0]x27: 00000000000005bc x26:ffffffc01ee14c40
[6464.203270]<0>-(0)[3:ksoftirqd/0]x25: ffffffc06ee12510 x24:ffffffc06d3d2730
[ 6464.203308]<0>-(0)[3:ksoftirqd/0]x23:ffffffc023ba8300 x22: ffffffc06d3d2720
[6464.203347]<0>-(0)[3:ksoftirqd/0]x21: ffffffc06d3d2000 x20:ffffffc06d3d2700
[6464.203385]<0>-(0)[3:ksoftirqd/0]x19: ffffffc00141e000 x18:0000000000000000
[ 6464.203422]<0>-(0)[3:ksoftirqd/0]x17:0000007f7ed6fcf8 x16: ffffffc000278828
[6464.203459]<0>-(0)[3:ksoftirqd/0]x15: 0000007f7eda9a24 x14:228f252b6f65a378
[6464.203498]<0>-(0)[3:ksoftirqd/0]x13: 9939719eb9fc9521 x12:0260832913e230f2
[6464.203535]<0>-(0)[3:ksoftirqd/0]x11: 63530fe2e6e696f3 x10:399aa79385bb3861
[6464.203573]<0>-(0)[3:ksoftirqd/0]x9 : 01a6b3c12e057068 x8 :2421eada8933ba1d
[6464.203610]<0>-(0)[3:ksoftirqd/0]x7 : e4324d79f1892abb x6 :ffffffc0393165bc
[6464.203646]<0>-(0)[3:ksoftirqd/0]x5 : 0000000000000000 x4 :0000000000000003
[6464.203682]<0>-(0)[3:ksoftirqd/0]x3 : 0000000000000002 x2 :0000000000000000
[6464.203718]<0>-(0)[3:ksoftirqd/0]x1 : 0000000000000140 x0 :ffffffc06d3d2000
启动gdb时会显示最后出现点, 以上面的异常来分析,u_ether.c:893
C语言代码为:
if ((dev->tx_skb_hold_count
从上面的log看,是由NULL指针引起. 这里涉及到三个指针,dev, dev->port_usb, dev->net.
那么怎么查找到底是哪个指针有问题了?
2.3.1直接打印变量值
p dev
$1 =
可以看出已经被编译器优化了,无法用p直接打印
2.3.2 PC+偏移量法
首先确定偏移量:
p&(((struct eth_dev *)0)->net)
$1 = (struct net_device **) 0x10
(gdb) p &(((struct eth_dev*)0)->port_usb)
$2 = (struct gether **) 0x8
p (((struct gether*)0)->dl_max_transfer_len)
Cannot access memory at address 0xe4
p (((struct net_device *)0)->mtu)
Cannot access memory at address 0x1b8
可以看出dev->net和port_usb的偏移量为16和8,
dl_max_transfer_len和mtu的偏移量为:0xe4 ,0x1b8
在log中提示无法处理虚拟地址为0x000000e4
Unable to handle kernel NULL pointerdereference at virtual address 000000e4
而dl_max_transfer_len的偏移量刚好为0xe4,则可以证明port_usb为空指针.
2.3.3 汇编+偏移量+寄存器
用disassemble 打印出当前函数的汇编语言(这里只列举部分)
再查找16,8, 228(0xe4),440(0x1b8)
0xffffffc00088d27c <+432>: bl 0xffffffc0004803c0
0xffffffc00088d280 <+436>: ldr w28, [x23,#104]
0xffffffc00088d284 <+440>: ldr w1, [x26,#-56]
0xffffffc00088d288 <+444>: mov x0, x23
0xffffffc00088d28c <+448>: add w28, w28, w1
0xffffffc00088d290 <+452>: str w28, [x26,#-56]
0xffffffc00088d294 <+456>: mov w27, w28
0xffffffc00088d298 <+460>: bl 0xffffffc0009ce020
0xffffffc00088d29c <+464>: mov x0, x22
0xffffffc00088d2a0 <+468>: bl 0xffffffc000b52434<_raw_spin_lock_irqsave>
0xffffffc00088d2a4 <+472>: mov x1, x0
0xffffffc00088d2a8 <+476>: ldr w2, [x20,#88] /*dev->tx_skb_hold_count */
0xffffffc00088d2ac <+480>: ldr w4, [x20,#136]
0xffffffc00088d2b0 <+484>: add w2, w2, #0x1
0xffffffc00088d2b4 <+488>: str w2, [x20,#88]
0xffffffc00088d2b8 <+492>: cmp w2, w4
0xffffffc00088d2bc <+496>: b.cs 0xffffffc00088d2dc
---Type
0xffffffc00088d2c0 <+500>: ldr x2, [x20,#8] /*dev->port_usb*/
0xffffffc00088d2c4 <+504>: ldr x0, [x20,#16]/*dev->net*/
=> 0xffffffc00088d2c8<+508>: ldr w2, [x2,#228]/*dev->port_usb->dl_max_transfer_len*/
0xffffffc00088d2cc <+512>: ldr w0, [x0,#440]/*dev->net->mtu*/
PC在0xffffffc00088d2c8出现异常,说明x2寄存器为NULL,可以证明dev->port_usb为NULL 。
另外这里寄存器x20保存有dev的指针,x20的值为ffffffc06d3d2700 ,也可尝试用p打印这个地址,port_usb的确为NULL.
p *(struct eth_dev*)0xffffffc06d3d2700
$10 = {lock = {{rlock = {raw_lock = {lock =0}, break_lock = 0}}}, port_usb = 0x0, net =0xffffffc06d3d2000, gadget = 0xffffffc06ee132a0, req_lock = {{rlock = {
raw_lock = {lock = 1}, break_lock= 0}}}, reqrx_lock = {{rlock = {raw_lock = {lock = 0}, break_lock = 0}}},tx_reqs = {next = 0xffffffc06d3d2730,
prev = 0xffffffc06d3d2730}, rx_reqs = {next = 0xffffffc06d3d2740, prev =0xffffffc06d3d2740}, tx_qlen = 1, no_tx_req_used = 0, tx_skb_hold_count = 1,
tx_req_bufsize = 4740, rx_frames = {next = 0xffffffc06d3d2760, prev =0xffffffc06d3d2760, qlen = 0, lock = {{rlock = {raw_lock = {lock = 0},break_lock = 0}}}},
header_len = 0, ul_max_pkts_per_xfer = 1, dl_max_pkts_per_xfer = 3, wrap= 0x0, unwrap = 0x0, work = {data = {counter = 68719476704}, entry = {
next = 0xffffffc06d3d27a8, prev = 0xffffffc06d3d27a8}, func =0xffffffc00089dda8
next = 0xffffffc06d3d27c8, prev = 0xffffffc06d3d27c8}, func =0xffffffc00088db5c
next = 0xffffffc06d3d27e8, prev = 0xffffffc06d3d27e8}, func = 0xffffffc00089dd74
host_mac = "\246\030\003",
3. 调试总结
1 调试时需要确定vmlinux与DB文件对应.不然无法精准定位, 打开vmlinux ,搜索SMP关键字,可以确认vmlinu的编译时间.
2. 内存标示
有时用p打印出变量的值全部为0x6b6b6b6b,这说明内存已经被其他地方释放
内核有定义.
#define POISON_INUSE 0x5a
/* for use-uninitialised poisoning */
#define POISON_FREE 0x6b
/* for use-after-free poisoning */
#define POISON_END 0xa5
/* end-byte of poisoning */
本文永久更新链接: http://embeddedlinux.org.cn/emb-linux/kernel-driver/201901/25-8503.html
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 内核必须懂(六): 使用kgdb调试内核
- 新手向———内核调试(上)
- 用VirtualBox调试macOS内核
- 源码级调试的XNU内核
- Linux内核常用的动态调试手段
- 本地内核调试神器:livekd 使用总结
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Java常用算法手册
2012-5 / 59.00元
《Java常用算法手册》分三篇,共13章,分别介绍了算法基础、算法应用和算法面试题。首先介绍了算法概述,然后重点分析了数据结构和基本算法思想;接着,详细讲解了算法在排序、查找、数学计算、数论、历史趣题、游戏、密码学等领域中的应用;最后,列举了算法的一些常见面试题。书中知识点覆盖全面,结构安排紧凑,讲解详细,实例丰富。全书对每一个知识点都给出了相应的算法及应用实例,虽然这些例子都是以Java语言来编......一起来看看 《Java常用算法手册》 这本书的介绍吧!