RabbitMQ 幂等性概念及业界主流解决方案

栏目: 数据库 · 发布时间: 5年前

内容简介:可以参考数据库乐观锁机制,比如执行一条更新库存的 SQL 语句,在并发场景,为了性能和数据可靠性,会在更新时加上查询时的版本,并且更新这个版本信息。可能你要对一个事情进行操作,这个操作可能会执行成百上千次,但是操作结果都是相同的,这就是幂等性。在海量订单生成的业务高峰期,生产端有可能就会重复发生了消息,这时候消费端就要实现幂等性,这就意味着我们的消息永远不会被消费多次,即使我们收到了一样的消息。大家肯定懂唯一 ID 的,就不多说了,为什么需要指纹码呢?这是为了应对用户在一瞬间的频繁操作,这个指纹码可能是我们

可以参考数据库乐观锁机制,比如执行一条更新库存的 SQL 语句,在并发场景,为了性能和数据可靠性,会在更新时加上查询时的版本,并且更新这个版本信息。可能你要对一个事情进行操作,这个操作可能会执行成百上千次,但是操作结果都是相同的,这就是幂等性。

二、消费端的幂等性保障

在海量订单生成的业务高峰期,生产端有可能就会重复发生了消息,这时候消费端就要实现幂等性,这就意味着我们的消息永远不会被消费多次,即使我们收到了一样的消息。

业界主流的幂等性有两种操作:

1.唯一 ID + 指纹码 机制,利用数据库主键去重

2.利用 redis 的原子性去实现
复制代码

三、唯一 ID + 指纹码 机制

大家肯定懂唯一 ID 的,就不多说了,为什么需要指纹码呢?这是为了应对用户在一瞬间的频繁操作,这个指纹码可能是我们的一些规则或者时间戳加别的服务给到的唯一信息码,它并不一定是我们系统生成的,基本都是由我们的业务规则拼接而来,但是一定要保证唯一性,然后就利用查询语句进行判断这个id是否存在数据库中。

好处就是实现简单,就一个拼接,然后查询判断是否重复。

坏处就是在高并发时,如果是单个数据库就会有写入性能瓶颈

解决方案:根据 ID 进行分库分表,对 id 进行算法路由,落到一个具体的数据库,然后当这个 id 第二次来又会落到这个数据库,这时候就像我单库时的查重一样了。利用算法路由把单库的幂等变成多库的幂等,分摊数据流量压力,提高性能。

四、利用 redis 的原子性去实现

相信大家都知道 redis 的原子性操作,我这里就不需要过多介绍了。

使用 redis 的原子性去实现需要考虑两个点

一是 是否 要进行数据落库,如果落库的话,关键解决的问题是数据库和缓存如何做到原子性? 数据库与缓存进行同步肯定要进行写操作,到底先写 redis 还是先写数据库,这是个问题,涉及到缓存更新与淘汰的问题

二是如果不落库,那么都存储到缓存中,如何设置定时同步的策略? 不入库的话,可以使用双重缓存等策略,保障一个消息副本,具体同步可以使用类似 databus 这种同步工具。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

能量分析攻击

能量分析攻击

Stefan Mangard、Elisabeth Oswald、Thomas Popp / 科学出版社 / 2010-8 / 58.00元

《能量分析攻击》可以作为密码学、电子工程、信息安全等专业的教材,也可以供相关专业人员参考。能量分析攻击旨在通过分析密码设备的能量消耗这一物理特性来恢复设备内部的秘密信息,这种基于实现特性的密码分析对广泛应用的各类密码模块的实际安全性造成了严重威胁,《能量分析攻击》是关于能量分析攻击的综合性专著,系统阐述了能量分析攻击的基本原理、技术方法以及防御对策的设计与分析。一起来看看 《能量分析攻击》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具