内容简介:首先来了解一下来自维基百科上关于CPU缓存的介绍。当从内存中取单元到cache中时,会一次取一个cacheline大小的内存区域到cache中,然后存进相应的cacheline中, 所以当你读取一个变量的时候,可能会把它相邻的变量也读取到CPU的缓存中(如果正好在一个cacheline中),因为有很大的几率你回继续访问相邻的变量,这样CPU利用缓存就可以加速对内存的访问。在多核的情况下,如果两个CPU同时访问某个变量,可能两个CPU都会把变量以及相邻的变量都读入到自己的缓存中:
首先来了解一下来自维基百科上关于CPU缓存的介绍。
在计算机系统中,CPU高速缓存(英语:CPU Cache,在本文中简称缓存)是用于减少处理器访问内存所需平均时间的部件。在金字塔式存储体系中它位于自顶向下的第二层,仅次于CPU寄存器。其容量远小于内存,但速度却可以接近处理器的频率。
当处理器发出内存访问请求时,会先查看缓存内是否有请求数据。如果存在(命中),则不经访问内存直接返回该数据;如果不存在(失效),则要先把内存中的相应数据载入缓存,再将其返回处理器。
缓存之所以有效,主要是因为程序运行时对内存的访问呈现局部性(Locality)特征。这种局部性既包括空间局部性(Spatial Locality),也包括时间局部性(Temporal Locality)。有效利用这种局部性,缓存可以达到极高的命中率。
在处理器看来,缓存是一个透明部件。因此,程序员通常无法直接干预对缓存的操作。但是,确实可以根据缓存的特点对程序代码实施特定优化,从而更好地利用缓存。
结构上,一个直接映射(Direct Mapped)缓存由若干缓存块(Cache Block,或Cache Line)构成。每个缓存块存储具有连续内存地址的若干个存储单元。在32位计算机上这通常是一个双字(dword),即四个字节。因此,每个双字具有唯一的块内偏移量。每个缓存块还可对应若干标志位,包括有效位(valid bit)、脏位(dirty bit)、使用位(use bit)等。这些位在保证正确性、排除冲突、优化性能等方面起着重要作用。
Intel的x86架构CPU从386开始引入使用SRAM技术的主板缓存,大小从16KB到64KB不等。486引入两级缓存。其中8KBL1缓存和CPU同片,而L2缓存仍然位于主板上,大小可达268KB。将二级缓存置于主板上在此后十余年间一直设计主流。但是由于SDRAM技术的引入,以及CPU主频和主板总线频率的差异不断拉大,主板缓存在速度上的对内存优势不断缩水。因此,从Pentium Pro起,二级缓存开始和处理器一起封装,频率亦与CPU相同(称为全速二级缓存)或为CPU主频的一半(称为半速二级缓存)。
AMD则从K6-III开始引入三级缓存。基于Socket 7接口的K6-III拥有64KB和256KB的同片封装两级缓存,以及可达2MB的三级主板缓存。
今天的CPU将三级缓存全部集成到CPU芯片上。多核CPU通常为每个核配有独享的一级和二级缓存,以及各核之间共享的三级缓存。
当从内存中取单元到cache中时,会一次取一个cacheline大小的内存区域到cache中,然后存进相应的cacheline中, 所以当你读取一个变量的时候,可能会把它相邻的变量也读取到CPU的缓存中(如果正好在一个cacheline中),因为有很大的几率你回继续访问相邻的变量,这样CPU利用缓存就可以加速对内存的访问。
在多核的情况下,如果两个CPU同时访问某个变量,可能两个CPU都会把变量以及相邻的变量都读入到自己的缓存中:
这会带来一个问题:当第一个CPU更新一个变量a的时候,它会导致第二个CPU读取变量b cachemiss, 即使变量b的值实际并没有变化。因为CPU的最小读取单元是cacheline,所以你可以看作a和b是一个整体,这就是伪共享:**一个核对缓存中的变量的更新会强制其它核也更新变量。
伪共享带来了性能的损失,因为从CPU缓存中读取变量要比从内存中读取变量快的多, 这里有一个很经典的图:
在并发编程中,经常会有共享数据被多个goroutine同时访问, 所以如何有效的进行数据的设计,就是一个相当有技巧的操作。最常用的技巧就是 Padding
。现在大部分的CPU的cahceline是64字节,将变量补足为64字节可以保证它正好可以填充一个cacheline。
台湾的 盧俊錡 Genchi Lu 提供了一个很好的例子来比较pad和没有padding的性能(我稍微改了一下)。
package test import ( "sync/atomic" "testing" ) type NoPad struct { a uint64 b uint64 c uint64 } func (np *NoPad) Increase() { atomic.AddUint64(&np.a,1) atomic.AddUint64(&np.b,1) atomic.AddUint64(&np.c,1) } type Pad struct { a uint64 _p1 [8]uint64 b uint64 _p2 [8]uint64 c uint64 _p3 [8]uint64 } func (p *Pad) Increase() { atomic.AddUint64(&p.a,1) atomic.AddUint64(&p.b,1) atomic.AddUint64(&p.c,1) } func BenchmarkPad_Increase(b *testing.B) { pad := &Pad{} b.RunParallel(func(pb *testing.PB) { for pb.Next() { pad.Increase() } }) } func BenchmarkNoPad_Increase(b *testing.B) { nopad := &NoPad{} b.RunParallel(func(pb *testing.PB) { for pb.Next() { nopad.Increase() } }) }
运行结果:
go test -gcflags "-N -l" -bench . goos: darwin goarch: amd64 BenchmarkPad_Increase-4 30000000 56.4 ns/op BenchmarkNoPad_Increase-4 20000000 91.4 ns/op
可能每次运行的结果不相同,但是基本上Padding后的数据结构要比没有padding的数据结构要好的多。
Java中知名的高性能的 disruptor库 中的设计中也采用了padding的方式避免伪共享。
你可以使用 intel-go/cpuid 获取CPU的cacheline的大小, 官方库 x/sys/cpu 也提供了一个 CacheLinePad
struct用来padding,你只需要在你的struct定义的第一行增加 _ CacheLinePad
这么一行即可:
var X86 struct { _ CacheLinePad HasAES bool // AES hardware implementation (AES NI) HasADX bool // Multi-precision add-carry instruction extensions ......
参考资料
- https://zh.wikipedia.org/wiki/CPU缓存
- https://medium.com/@genchilu/whats-false-sharing-and-how-to-solve-it-using-golang-as-example-ef978a305e10
- https://github.com/golang/go/issues/14980
- https://github.com/klauspost/cpuid
- https://segment.com/blog/allocation-efficiency-in-high-performance-go-services/
- https://luciotato.svbtle.com/golangs-duffs-devices
- https://stackoverflow.com/questions/14707803/line-size-of-l1-and-l2-caches
- https://luciotato.svbtle.com/golangs-duffs-devices
- https://github.com/golang/go/issues/25203
以上所述就是小编给大家介绍的《cacheline 对 Go 程序的影响》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 为什么 NUMA 会影响程序的延迟
- PHP 程序应该减少 brk 调用,否则性能会受影响
- 不加班被领导批评影响氛围,程序员怒怼:效率高不行?难道划水?
- 什么影响了数据库查询速度、什么影响了MySQL性能?
- css – Polymer 1.0 app-theme仅影响index.html,而不影响自定义元素
- AI 如何影响智能交互
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
计算统计
Geof H.Givens、Jennifer A.Hoeting / 王兆军、刘民千、邹长亮、杨建峰 / 人民邮电出版社 / 2009-09-01 / 59.00元
随着计算机的快速发展, 数理统计中许多涉及大计算量的有效方法也得到了广泛应用与迅猛发展, 可以说, 计算统计已是统计中一个很重要的研究方向. 本书既包含一些经典的统计计算方法, 如求解非线性方程组的牛顿方法、传统的随机模拟方法等, 又全面地介绍了近些年来发展起来的某些新方法, 如模拟退火算法、基因算法、EM算法、MCMC方法、Bootstrap方法等, 并通过某些实例, 对这些方法的应用进行......一起来看看 《计算统计》 这本书的介绍吧!