内容简介:2018也许是1.也许你之前听过
2018也许是 AutoML (自动化机器学习)的探索元年。就让我们从AutoML聊起。
1. AdaNet — 一个基于TensorFlow的开源神经网络自动学习项目 。
也许你之前听过 Auto-Keras 和 Auto-Sklearn ,但是如果要认真去做神经网络的AutoML, AdaNet 有许多值得借鉴的地方。
如上图, AdaNet 会在网络层中尝试使用不用的候选(Candidates)结构和参数。并且自己维护一个Adanet loss(带正则):
入门 AdaNet 可以先通读项目中的例程: https://github.com/tensorflow/adanet/blob/master/adanet/examples/tutorials/adanet_objective.ipynb ,并理解如何使用AdaNet已有类构造子网络生成器:
class SimpleDNNGenerator(adanet.subnetwork.Generator): """Generates a two DNN subnetworks at each iteration. The first DNN has an identical shape to the most recently added subnetwork in `previous_ensemble`. The second has the same shape plus one more dense layer on top. This is similar to the adaptive network presented in Figure 2 of [Cortes et al. ICML 2017](https://arxiv.org/abs/1607.01097), without the connections to hidden layers of networks from previous iterations. """ def __init__(self, optimizer, layer_size=64, learn_mixture_weights=False, seed=None): """Initializes a DNN `Generator`. Args: optimizer: An `Optimizer` instance for training both the subnetwork and the mixture weights. layer_size: Number of nodes in each hidden layer of the subnetwork candidates. Note that this parameter is ignored in a DNN with no hidden layers. learn_mixture_weights: Whether to solve a learning problem to find the best mixture weights, or use their default value according to the mixture weight type. When `False`, the subnetworks will return a no_op for the mixture weight train op. seed: A random seed. Returns: An instance of `Generator`. """ self._seed = seed self._dnn_builder_fn = functools.partial( _SimpleDNNBuilder, optimizer=optimizer, layer_size=layer_size, learn_mixture_weights=learn_mixture_weights) def generate_candidates(self, previous_ensemble, iteration_number, previous_ensemble_reports, all_reports): """See `adanet.subnetwork.Generator`.""" num_layers = 0 seed = self._seed if previous_ensemble: num_layers = tf.contrib.util.constant_value( previous_ensemble.weighted_subnetworks[ -1].subnetwork.persisted_tensors[_NUM_LAYERS_KEY]) if seed is not None: seed += iteration_number return [ self._dnn_builder_fn(num_layers=num_layers, seed=seed), self._dnn_builder_fn(num_layers=num_layers + 1, seed=seed), ]
2. TPOT — 贴心到要把 特征选择、模型选择和模型优化 一并做了
TPOT试图把繁琐的 特征选择、模型选择和模型优化 一并做优化并输出在另一个py文件中:
from tpot import TPOTClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split digits = load_digits() X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, train_size=0.75, test_size=0.25) tpot = TPOTClassifier(generations=5, population_size=20, verbosity=2) tpot.fit(X_train, y_train) print(tpot.score(X_test, y_test)) tpot.export('tpot_mnist_pipeline.py')
运行以上代码会自动优化并输出
tpot_mnist_pipeline.py 代码文件:
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier # NOTE: Make sure that the class is labeled 'target' in the data file tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64) features = tpot_data.drop('target', axis=1).values training_features, testing_features, training_target, testing_target = \ train_test_split(features, tpot_data['target'].values, random_state=None) exported_pipeline = KNeighborsClassifier(n_neighbors=6, weights="distance") exported_pipeline.fit(training_features, training_classes) results = exported_pipeline.predict(testing_features)
但是tpot基于scikit-learn,如果没有进行很高的优化,代码运行时间可能会令你无法忍受。其使用简单到是适合初学者实验。
3. SHAP — 解释模型的预测行为
SHAP比一般模型分析 工具 好用的地方有两个,
- 支持tensorflow,pytorch,keras等深度学习框架
- 支持深度神经网络模型的预测行为可视化,如下图,红色的像素区域表示在当前标签下的概率更大:
只需短短几行代码你就可以生成数据增强图片:
p = Augmentor.Pipeline("/path/to/images") # Point to a directory containing ground truth data. # Images with the same file names will be added as ground truth data # and augmented in parallel to the original data. p.ground_truth("/path/to/ground_truth_images") # Add operations to the pipeline as normal: p.rotate(probability=1, max_left_rotation=5, max_right_rotation=5) p.flip_left_right(probability=0.5) p.zoom_random(probability=0.5, percentage_area=0.8) p.flip_top_bottom(probability=0.5) p.sample(50)
Augmentor还支持加入图片噪声和图像扭曲等功能:
2018年不乏许多好的自然语言项目, spaCy 就是其中之一。spaCy 使用较新的研究成果作出产品级别的功能,包含的feature不限于以下所列:
仅spaCy的分词( tokenization )就支持31种语言和嵌套分词:
6. pytext — 深度学习+ NLP + PyTorch
来自facebook的开源项目pytext是基于pytorch的,自身带着一股研究性(如果你想寻找 深度学习+ NLP 的论文实现),如David 9 在之前文章( 一维卷积在语义理解中的应用,莫斯科物理技术学院开源聊天机器人DeepPavlov解析及代码 )提到的一维卷积:
除了简单易用,与pytext不同的是,flair不专注于神经网络,但也对近年来一些成熟的方案给出了实现:
flair另一个亮点是有自己一套简单的方式组合不同的词嵌入(
embeddings ) ,包括
Flair embeddings , BERT embeddings 和LMo embeddings。
参考文献:
- https://heartbeat.fritz.ai/top-7-libraries-and-packages-of-the-year-for-data-science-and-ai-python-r-6b7cca2bf000
- https://heartbeat.fritz.ai/automated-machine-learning-in-python-5d7ddcf6bb9e
- https://github.com/zalandoresearch/flair
- https://github.com/mdbloice/Augmentor
- https://github.com/facebookresearch/PyText
本文采用 署名 – 非商业性使用 – 禁止演绎 3.0 中国大陆许可协议 进行许可。著作权属于“David 9的博客”原创,如需转载,请联系微信: david9ml,或邮箱:yanchao727@gmail.com
或直接扫二维码:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
编程人生(上卷)
[美] Peter Seibel / 图灵社区 / 人民邮电出版社 / 2014-12 / 39.00元
这是一本访谈笔录,记录了当今最具个人魅力的15 位软件先驱的编程生涯。包括Donald Knuth、Jamie Zawinski、Joshua Bloch、Ken Thompson等在内的业界传奇人物,为我们讲述了他们是怎么学习编程的,在编程过程中发现了什么以及他们对未来的看法,并对诸如应该如何设计软件等长久以来一直困扰很多程序员的问题谈了自己的观点。中文版分为上下卷,上卷介绍8位大师。一起来看看 《编程人生(上卷)》 这本书的介绍吧!