内容简介:本文最初发布于如果你正在雇用一个数据科学家团队或使用深度学习,那么可以在团队之间共享 GPU 的集群管理器将可以最大化 GPU 的利用率,并使数据科学家保持愉快的心情。在 Logical Clocks,我们与许多客户讨论过他们如何在团队之间共享 GPU,令人惊讶的是,许多公司仍然使用谷歌日历或固定的时间表来共享 GPU。许多公司甚至不跨业务部门共享 GPU,这更糟糕。不用说,这些方法不利于充分利用你的 GPU 投资,也不利于开发人员——因为他们可能无法在需要时使用所有可用的 GPU。
本文最初发布于 Logical Clocks AB 的官方 博客,经原作者授权由 InfoQ 中文站翻译并分享。
如果你正在雇用一个数据科学家团队或使用深度学习,那么可以在团队之间共享 GPU 的集群管理器将可以最大化 GPU 的利用率,并使数据科学家保持愉快的心情。
共享 GPU 的反模式
在 Logical Clocks,我们与许多客户讨论过他们如何在团队之间共享 GPU,令人惊讶的是,许多公司仍然使用谷歌日历或固定的时间表来共享 GPU。许多公司甚至不跨业务部门共享 GPU,这更糟糕。不用说,这些方法不利于充分利用你的 GPU 投资,也不利于开发人员——因为他们可能无法在需要时使用所有可用的 GPU。
GPU 即资源(GPUs-as-a-Resource)
资源管理器用于管理数据中心或组织中可用的计算和 GPU 资源。开发人员可以通过向集群提交应用程序请求来使用资源管理器运行应用程序:请使用 X 容器启动我的应用程序,其中每个容器都有 Y 个 CPU 和 X GB 内存。然后,当资源管理器可以将这些资源分配给应用程序时,它就会调度应用程序执行。对于深度学习,我们需要 GPU,有一些现代化的资源管理器支持“GPU 即资源”,你可以请求在容器中加入 N 个 GPU。深度学习应用程序可以对资源管理器提出具体的要求。对于 分布式训练 (使用 1 个以上的 GPU),应用程序会同时请求所有的 GPU——即所谓的 分组调度(Gang Scheduling) 。但是,对于 超参数优化 ,应用程序开始时可以只使用 1 个 GPU,并在资源管理器 增量分配 GPU 时使用更多的 GPU。为了让分组调度和增量分配正常工作,需要应用程序软件和资源管理器都支持。
分布式训练需要资源管理器提供分组调度支持 ,以便可以同时提供 GPU。如果不支持或不完全支持分组调度,则分布式训练可能会无限期地中断,或者导致资源管理器死锁。
超参数优化可以使用资源管理器增量分配的 GPU 。它可以仅使用 1 个 GPU,也可以使用更多的 GPU 获得更快的速度。
机器学习工作流
当机器学习从研发转移到生产时,模型训练通常会成为一个更长的机器学习工作流程中的一个阶段,其中包括(1)收集和准备训练数据,(2)训练 / 验证模型,以及(3)部署模型以提供服务。如果数据量很大,阶段(1)可能需要许多容器以及许多 CPU,用于 ETL 和 / 或特征工程。Spark/PySpark 是用于这个阶段的流行框架。对于阶段(2),可以使用 PyTorch 或 Keras/TensorFlow 等框架进行训练。分布式训练可以在 HopsML 等框架的帮助下完成。最后,阶段(3)涉及到将模型部署到生产环境中以提供服务。这可以在不同的集群或相同的集群上完成。Kubernetes 是一个流行的模型服务框架,因为它支持负载平衡和伸缩性。
机器学习工作流包含 DataPrep 阶段、训练阶段和模型服务阶段,每个阶段需要集群提供不同的资源集。DataPrep 通常需要 CPU,训练需要 GPU,服务需要 CPU(低延迟模型服务可能也需要 GPU)。
YARN、Mesos、Slurm、Kubernetes
有多种数据中心资源管理器支持 GPU 即资源:
- YARN
- Kubernetes
- Mesos (DC/OS)
- Slurm
YARN 是本地数据湖的主要资源调度程序,自 Hadoop 3.1 版以来,它就对 GPU 即资源提供了全面支持。Hops 的 YARN 是 Hadoop 的一个分支,自 2017 年 10 月以来一直支持 GPU 即资源。这两个版本都不支持分组调度,但是 Hops 在 YARN 上提供的层次分组调度语义使用了 PySpark 和 HopsML API。实际上,训练应用程序是在单个 map 操作中运行的,而该操作由 HopsML 在 PySpark 执行器上进行分组调度。在 Spark 2.4 中,有一种新的 障碍执行模式 ,也支持分布式训练的分组调度。
Mesos 不支持分组调度,但是,与 HopsML 使用 Spark 向 YARN 添加分组调度支持类似,Uber 在一个名为 Peleton 的平台上添加了对 使用 Spark 进行分布式训练的分组调度支持 。遗憾的是,Peleton 目前不是开源的,Uber 正在讨论将 Peleton 迁移到 Kubernetes。Kubernetes 目前正致力于支持 分组调度 (或者他们称之为协同调度),并且有望在 2019 年晚些时候将其包含在 KubeFlow 这样的框架中。传统上,Slurm 用于 HPC 集群,在云或数据湖集群中没有得到广泛的应用,但提供了原生分组调度支持。
我们现在讨论使用以下两个开源框架的数据科学家如何使用资源管理器:KubeFlow on Kubernetes 和 Hopsworks on Hops YARN。
使用 KubeFlow 的数据科学家的经验
Kubernetes 支持使用 YAML 中的集群规范创建包含 GPU 的集群,例如:
复制代码
apiVersion: v1 kind: Pod metadata: name: cuda-vector-add spec: restartPolicy: OnFailure containers: –name: cuda-vector-add #https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/images/nvidia-cuda/Dockerfile image:"k8s.gcr.io/cuda-vector-add:v0.1" resources: limits: nvidia.com/gpu:1# requesting1GPU
数据科学家通常不直接使用 Kubernetes,因为这涉及太多 DevOps:YAML 规范、安装 Python 库和其他包的 Dockerfile。相反,Kubeflow 通常用于配置集群,并在命令行中使用 GPU 训练深层神经网络。
首先,数据科学家可以使用命令行,通过以下命令检查集群中 GPU 的可用性:
复制代码
$ kubectl describe nodes | grep -B3gpu Capacity: cpu:8 memory: 2879772Ki nvidia.com/gpu:2 — Allocatable: cpu:8 memory: 2777372Ki nvidia.com/gpu:2
然后,假设你已经安装了 Kubeflow(比如使用 本教程 ),那么你可以通过以下命令使用 Kubeflow 在 GPU 上训练深度神经网络:
复制代码
ks generate tf-job mnist –name=mnist –namespace=mykubeflow # examine, then set the cluster configuration parameters ks param list COMPONENT PARAM VALUE ========= ===== ===== mnist args"null" mnist image"null" mnist image_gpu."null" mnist name"mnist" mnist namespace"mykubeflow" mnist num_gpus 0 mnist num_masters 1 mnist num_ps 0 mnist num_workers 0 IMAGE=docker.io/raddaoui/tfjob_mnist_image:2.0 ks paramsetmnist image${IMAGE} ks paramsetmnist num_ps 2 ks paramsetmnist num_workers 3 ks paramsetmnist num_masters 0 ks paramsetmnist args — python,/opt/mnist_replica.py # start training ks applydefault-c
使用 Hopsworks 的数据科学家的经验
Hopsworks 是我们面向机器学习和数据分析的扩展平台,它基于下一代 Hadoop 平台 Hops。在 Hopsworks UI 中,数据科学家可以快速查看集群中可用 GPU 的数量:
启动一个有多个 GPU 的集群非常简单,只需确定要分配给应用程序主程序和执行程序的 GPU 数量和内存量即可:
最后,数据科学家可以使用 pip 和 conda 安装 Python 库(不需要编写 Dockerfile):
Hopsworks 中的机器学习工作流
在 Hopsworks,我们为(1)DataPrep 和(2)训练阶段和(3)模型服务 Kubernetes 提供 YARN 支持,如下图所示。通常,DataPrep 是在 PySpark 或 Spark 上完成的,该阶段的输出是将训练数据写入我们的分布式文件系统 HopsFS。训练通常通过使用 PySpark 启动 PyTorch 或 TensorFlow/Keras 应用程序来完成,经过训练的模型存储在 HopsFS 上。最后,在 Kubernetes 中通过从 HopsFS 读取模型来提供服务。
HopsML 中的机器学习工作流可以在 PySpark 上运行 DataPrep 阶段,在 TensorFlow/PyTorch 上进行(分布式)训练,在 Kubernetes 上提供模型服务。一个分布式文件系统 HopsFS 用于集成不同的阶段,YARN 用于为 PySpark 阶段分配 CPU 以及为训练阶段分配 GPU。
有集群管理器就够了吗?
在 2018 年 Spark 欧洲峰会上的演讲 中,我们指出,集群管理器本身不足以最有效地利用 GPU。数据科学家可以在 Jupyter 笔记本上编写 Python 程序,在那里他们可以使用相同的资源进行训练和可视化。例如,开发人员可以在 Jupyter 中编写一个 cell 在一个或多个 GPU 上训练网络,然后编写后续 cell 来评估该模型的性能,然后会有一个或多个 cell 来可视化或验证经过训练的模型。当数据科学家可视化地分析训练好的模型时,她不必使用宝贵的 GPU 资源。
GPU 应该在训练 / 评估完成后立即释放——与如何实现分组调度无关。你可以使用(1)规则和分布式文件系统或(2)HopsML 确保 GPU 立即被释放。对于(1),开发人员可以将他们训练过的模型和评估数据集写入分布式文件系统,并在训练完成后关闭用于训练模型的容器。然后打开一个新的 Python 笔记本,访问相同的分布式文件系统,以直观地检查经过训练的模型。对于(2),在 HopsML 中,开发人员将他们的训练代码放在 Python 中的一个函数里,这个函数在 GPU 上运行,当函数返回时,与其关联的 GPU 会在几秒钟的不活动状态后释放。HopsML 使用 PySpark 中的动态执行器实现了这种行为——要了解更多细节,请阅读这篇 博文 。下面的例子展示了如何在 HopsML 中构造代码:
复制代码
deftrain_fn(): # training code goes here fromhopsimportexperiment experiment.launch(train_fn)
小结
集群管理器(例如 YARN for Hopsworks)将帮助你最大化 GPU 的价值,并通过模型的分布式训练和超参数优化提高数据科学家的工作效率,从而使他们保持愉快的心情。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。