内容简介:mechanize是一个模拟browser行为的一个库,当然你也可以用其它的如urllib2、request、tornado.httpclient等等库,不是必须。后面两个numpy和matplotlib也是可选的,当你需要它自动生成图形化报表时才会用到,安装matplotlib你的系统有可能需要安装libpng和freetype库。注意:按multi-mechanize的默认规则,每个脚本必须有一个Transaction的类,类要有一个run方法,在run里面写测试业务逻辑。这个例子是打开http://w
pip install multi-mechanize mechanize numpy matplotlib
mechanize是一个模拟browser行为的一个库,当然你也可以用其它的如urllib2、request、tornado.httpclient等等库,不是必须。
后面两个numpy和matplotlib也是可选的,当你需要它自动生成图形化报表时才会用到,安装matplotlib你的系统有可能需要安装libpng和freetype库。
multimech-newproject my_project
# # Copyright (c) 2010 Corey Goldberg (corey@goldb.org) # License: GNU LGPLv3 # # This file is part of Multi-Mechanize # import mechanize import time class Transaction(object): def __init__(self): self.custom_timers = {} def run(self): br = mechanize.Browser() br.set_handle_robots(False) start_timer = time.time() resp = br.open('http://www.example.com/') resp.read() latency = time.time() - start_timer self.custom_timers['Example_Homepage'] = latency assert (resp.code == 200), 'Bad HTTP Response' assert ('Example Web Page' in resp.get_data()), 'Failed Content Verification' if __name__ == '__main__': trans = Transaction() trans.run() print trans.custom_timers
注意:按multi-mechanize的默认规则,每个脚本必须有一个Transaction的类,类要有一个run方法,在run里面写测试业务逻辑。这个例子是打开http://www.example.com,记录访问所耗时长,非常简单明了,而实际的场景你可能需要有用户登录、然后测试某个或多个页面(API),只是测试业务复杂一些,写法是类似的。一个脚本文件只能有一个Transaction的类、类也只能有一个run方法,写起case来是不是觉得非常不方便?不用急,针对这点,后面的小技巧部分会另辟蹊径给你指条明路。
运行项目的测试脚本
multimech-run my_project
使用小技巧
Cookie:
br._ua_handlers[“_cookies”].cookieja
单个脚本多个测试用例的支持:这个思路来源于testsuite的概念,同一个testsuite里的case作为一组相关的case可以共享一些代码逻辑和资源(如browser对象),而multi-mechanize默认的方式是不支持的,要实现这一点,只需要一点小小的技巧即可,上代码:
base.py,Transaction基类:
# -*- coding: utf-8 -*- import mechanize import time import traceback import logging class BaseTransaction(object): _TEST_CASE_PREFIX = "test_" def __init__(self): self._init() self.custom_timers = {} self.browser = mechanize.Browser() self.browser.set_handle_robots(False) self.browser.set_handle_redirect(True) self.browser.set_handle_referer(True) def _init(self): self.funcs = [] funcs_ = dir(self) for func_ in funcs_: if func_.startswith(self._TEST_CASE_PREFIX): self.funcs.append(func_) def run(self): """"所有继承BaseTransaction的类,只需要在以test_开头的方法里实现测试case即可,运行时多个case都可以得到测试""" try: for func in self.funcs: start_timer = time.time() getattr(self, func)() # run test latency = time.time() - start_timer self.custom_timers['%s' % func[len(self._TEST_CASE_PREFIX):]] = latency except Exception, e: logging.error(traceback.format_exc()) raise e
# -*- coding: utf-8 -*- from base import BaseTransaction class Transaction(BaseTransaction): def test_google_com_hk(self): # 测试逻辑代码,如类似于上面的测试example.com pass def test_google_com_sg(self): pass def test_google_com(self): pass
真实的并发量计算:multi-mechanize使用了multiprocessing库,会同时起多个进程,且每个进程按config里的配置起多个线程来实现并发测试,但真正的单位时间内的并发量并不是config里设置threads=10这样的表示每秒10个并发,真实的并发量需要根据最终完成的transaction数和这些transaction里面包含多少次http请求和总的完成时间来计算得知,这点不是很直观。
自定义统计数据:你可以往self.custom_timers这个内建的字典里塞任意的自定义统计数据,他们在报表中都能够得到体现。
更多的文档和一手资料请参考文档http://testutils.org/multi-mechanize/和git代码库https://github.com/cgoldberg/multi-mechanize 。最后multi-mechanize还不是很好用,一是使用过程中发现有一些情况会抛异常,导致不能正确生成报表,另一个别扭的是case的编写不是unittest那一套,是作者自创Transaction流:)
以上所述就是小编给大家介绍的《multi-mechanize负载压力》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 性能测试vs压力测试vs负载测试
- 没有压力的“压力测试”:LSTM神经网络是如何预测焦虑的?
- [原]压力测试
- jmeter 分布式压力测试
- 使用ab压力命令测试网站性能
- 漫谈数据治理(一):计算与存储压力
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。