Postmortem-debugging-Go-services-with-Delve

栏目: 服务器 · 发布时间: 5年前

内容简介:Vladimir Varankin 写于 2018/12/02某天,我们生产服务上的几个实例突然不能处理外部进入的流量,HTTP请求成功通过负载均衡到达实例,但是之后却hang住了。接下来记录的是一次调试在线Go服务的惊心动魄的经历。正是下面逐步演示的操作,帮助我们定位了问题的根本原因。

Vladimir Varankin 写于 2018/12/02

某天,我们生产服务上的几个实例突然不能处理外部进入的流量,HTTP请求成功通过负载均衡到达实例,但是之后却hang住了。接下来记录的是一次调试在线 Go 服务的惊心动魄的经历。

正是下面逐步演示的操作,帮助我们定位了问题的根本原因。

简单起见,我们将起一个Go写的HTTP服务作为调试使用,这个服务实现的细节暂时不做深究(之后我们将深入分析代码)。一个真实的生产应用可能包含很多组件,这些组件实现了业务罗和服务的基础架构。我们可以确信,这些应用已经在生产环境“身经百战” :)。

源代码以及配置细节可以查看 GitHub仓库 。为了完成接下来的工作,你需要一台 Linux 系统的虚机,这里我使用 vagrant-hostmanager 插件。 Vagrantfile 在GitHub仓库的根目录,可以查看更多细节。

让我们开启虚机,构建HTTP服务并且运行起来,可以看到下面的输出:

$ vagrant up
Bringing machine 'server-test-1' up with 'virtualbox' provider...

$ vagrant ssh server-test-1
Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-33-generic x86_64)
···
vagrant@server-test-1:~$ cd /vagrant/example/server
vagrant@server-test-1:/vagrant/example/server$ go build
vagrant@server-test-1:/vagrant/example/server$ ./server --addr=:10080
server listening addr=:10080
复制代码

通过 curl 发送请求到所起的HTTP服务,可以判断其是否处于工作状态,新开一个terminal并执行下面的命令:

$ curl 'http://server-test-1:10080'
OK
复制代码

为了模拟失败的情况,我们需要发送大量请求到HTTP服务,这里我们使用HTTP benchmark测试工具 wrk 进行模拟。我的MacBook是4核的,所以使用4个线程运行wrk,能够产生1000个连接,基本能够满足需求。

$ wrk -d1m -t4 -c1000 'http://server-test-1:10080'
Running 1m test @ http://server-test-1:10080
  4 threads and 1000 connections
  ···
复制代码

一会的时间,服务器hang住了。甚至等wrk跑完之后,服务器已经不能处理任何请求:

$ curl --max-time 5 'http://server-test-1:10080/'
curl: (28) Operation timed out after 5001 milliseconds with 0 bytes received
复制代码

我们遇到麻烦了!让我们分析一下。

在我们生产服务的真实场景中,服务器起来以后,goroutines的数量由于请求的增多而迅速增加,之后便失去响应。对pprof调试句柄的请求变得非常非常慢,看起来就像服务器“死掉了”。同样,我们也尝试使用 SIGQUIT 命令杀掉进程以 释放所运行goroutines堆栈 ,但是收不到任何效果。

GDB和Coredump

我们可以使用GDB(GNU Debugger)尝试进入正在运行的服务内部。

在生产环境运行调试器可能需要额外的权限,所以与你的团队提前沟通是很明智的。

在虚机上再开启一个SSH会话,找到服务器的进程id并使用调试器连接到该进程:

$ vagrant ssh server-test-1
Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-33-generic x86_64)
···
vagrant@server-test-1:~$ pgrep server
1628
vagrant@server-test-1:~$ cd /vagrant
vagrant@server-test-1:/vagrant$ sudo gdb --pid=1628 example/server/server
GNU gdb (Ubuntu 8.1-0ubuntu3) 8.1.0.20180409-git
···
复制代码

调试器连接到服务器进程之后,我们可以运行GDB的 bt 命令(aka backtrace)来检查当前线程的堆栈信息:

(gdb) bt
#0  runtime.futex () at /usr/local/go/src/runtime/sys_linux_amd64.s:532
#1  0x000000000042b08b in runtime.futexsleep (addr=0xa9a160 <runtime.m0+320>, ns=-1, val=0) at /usr/local/go/src/runtime/os_linux.go:46
#2  0x000000000040c382 in runtime.notesleep (n=0xa9a160 <runtime.m0+320>) at /usr/local/go/src/runtime/lock_futex.go:151
#3  0x0000000000433b4a in runtime.stoplockedm () at /usr/local/go/src/runtime/proc.go:2165
#4  0x0000000000435279 in runtime.schedule () at /usr/local/go/src/runtime/proc.go:2565
#5  0x00000000004353fe in runtime.park_m (gp=0xc000066d80) at /usr/local/go/src/runtime/proc.go:2676
#6  0x000000000045ae1b in runtime.mcall () at /usr/local/go/src/runtime/asm_amd64.s:299
#7  0x000000000045ad39 in runtime.rt0_go () at /usr/local/go/src/runtime/asm_amd64.s:201
#8  0x0000000000000000 in ?? ()
复制代码

说实话我并不是GDB的专家,但是显而易见Go运行时似乎使线程进入睡眠状态了,为什么呢?

调试一个正在运行的进程是不明智的,不如将该线程的coredump保存下来,进行离线分析。我们可以使用GDB的 gcore 命令,该命令将core文件保存在当前工作目录并命名为 core.<process_id>

(gdb) gcore
Saved corefile core.1628
(gdb) quit
A debugging session is active.

	Inferior 1 [process 1628] will be detached.

Quit anyway? (y or n) y
Detaching from program: /vagrant/example/server/server, process 1628
复制代码

core文件保存后,服务器没必要继续运行,使用 kill -9 结束它。

我们能够注意到,即使是一个简单的服务器,core文件依然会很大(我这一份是1.2G),对于生产的服务来说,可能会更加巨大。

如果需要了解更多使用GDB调试的技巧,可以继续阅读使用GDB调试Go代码。

使用Delve调试器

Delve 是一个针对Go程序的调试器。它类似于GDB,但是更关注Go的运行时、数据结构以及其他内部的机制。

如果你对Delve的内部实现机制很感兴趣,那么我十分推荐你阅读Alessandro Arzilli在GopherCon EU 2018所作的演讲,[ Internal Architecture of Delve, a Debugger For Go ]。

Delve是用Go写的,所以安装起来非常简单:

$ go get -u github.com/derekparker/delve/cmd/dlv
复制代码

Delve安装以后,我们就可以通过运行 dlv core <path to service binary> <core file> 来分析core文件。我们先列出执行coredump时正在运行的所有goroutines。Delve的 goroutines 命令如下:

$ dlv core example/server/server core.1628

(dlv) goroutines
  ···
  Goroutine 4611 - User: /vagrant/example/server/metrics.go:113 main.(*Metrics).CountS (0x703948)
  Goroutine 4612 - User: /vagrant/example/server/metrics.go:113 main.(*Metrics).CountS (0x703948)
  Goroutine 4613 - User: /vagrant/example/server/metrics.go:113 main.(*Metrics).CountS (0x703948)
复制代码

不幸的是,在真实生产环境下,这个列表可能会很长,甚至会超出terminal的缓冲区。由于服务器为每一个请求都生成一个对应的goroutine,所以 goroutines 命令生成的列表可能会有百万条。我们假设现在已经遇到这个问题,并想一个方法来解决它。

Delve支持"headless"模式,并且能够通过 JSON-RPC API 与调试器交互。

运行 dlv core 命令,指定想要启动的Delve API server:

$ dlv core example/server/server core.1628 --listen :44441 --headless --log
API server listening at: [::]:44441
INFO[0000] opening core file core.1628 (executable example/server/server)  layer=debugger
复制代码

调试服务器运行后,我们可以发送命令到其TCP端口并将返回结果以原生JSON的格式存储。我们以上面相同的方式得到正在运行的goroutines,不同的是我们将结果存储到文件中:

$ echo -n '{"method":"RPCServer.ListGoroutines","params":[],"id":2}' | nc -w 1 localhost 44441 > server-test-1_dlv-rpc-list_goroutines.json
复制代码

现在我们拥有了一个(比较大的)JSON文件,里面存储大量原始信息。推荐使用jq命令进一步了解JSON数据的原貌,举例:这里我获取JSON数据的result字段的前三个对象:

$ jq '.result[0:3]' server-test-1_dlv-rpc-list_goroutines.json
[
  {
    "id": 1,
    "currentLoc": {
      "pc": 4380603,
      "file": "/usr/local/go/src/runtime/proc.go",
      "line": 303,
      "function": {
        "name": "runtime.gopark",
        "value": 4380368,
        "type": 0,
        "goType": 0,
        "optimized": true
      }
    },
    "userCurrentLoc": {
      "pc": 6438159,
      "file": "/vagrant/example/server/main.go",
      "line": 52,
      "function": {
        "name": "main.run",
        "value": 6437408,
        "type": 0,
        "goType": 0,
        "optimized": true
      }
    },
    "goStatementLoc": {
      "pc": 4547433,
      "file": "/usr/local/go/src/runtime/asm_amd64.s",
      "line": 201,
      "function": {
        "name": "runtime.rt0_go",
        "value": 4547136,
        "type": 0,
        "goType": 0,
        "optimized": true
      }
    },
    "startLoc": {
      "pc": 4379072,
      "file": "/usr/local/go/src/runtime/proc.go",
      "line": 110,
      "function": {
        "name": "runtime.main",
        "value": 4379072,
        "type": 0,
        "goType": 0,
        "optimized": true
      }
    },
    "threadID": 0,
    "unreadable": ""
  },
  ···
]
复制代码

JSON数据中的每个对象都代表了一个goroutine。通过 命令手册

可知, goroutines 命令可以获得每一个goroutines的信息。通过手册我们能够分析出 userCurrentLoc 字段是服务器源码中goroutines最后出现的地方。

为了能够了解当core file创建的时候,goroutines正在做什么,我们需要收集JSON文件中包含 userCurrentLoc 字段的函数名字以及其行号:

$ jq -c '.result[] | [.userCurrentLoc.function.name, .userCurrentLoc.line]' server-test-1_dlv-rpc-list_goroutines.json | sort | uniq -c

   1 ["internal/poll.runtime_pollWait",173]
1000 ["main.(*Metrics).CountS",95]
   1 ["main.(*Metrics).SetM",105]
   1 ["main.(*Metrics).startOutChannelConsumer",179]
   1 ["main.run",52]
   1 ["os/signal.signal_recv",139]
   6 ["runtime.gopark",303]
复制代码

大量的goroutines(上面是1000个)在函数 main.(*Metrics).CoutS 的95行被阻塞。现在我们回头看一下我们服务器的 源码

main 包中找到 Metrics 结构体并且找到它的 CountS 方法(example/server/metrics.go)。

// CountS increments counter per second.
func (m *Metrics) CountS(key string) {
    m.inChannel <- NewCountMetric(key, 1, second)
}
复制代码

我们的服务器在往 inChannel 通道发送的时候阻塞住了。让我们找出谁负责从这个通道读取数据,深入研究代码之后我们找到了 下面的函数

// starts a consumer for inChannel
func (m *Metrics) startInChannelConsumer() {
    for inMetrics := range m.inChannel {
   	    // ···
    }
}
复制代码

这个函数逐个地从通道中读取数据并加以处理,那么什么情况下发送到这个通道的任务会被阻塞呢?

当处理通道的时候,根据Dave Cheney的通道准则,只有四种情况可能导致通道有问题:

  • 向一个nil通道发送
  • 从一个nil通道接收
  • 向一个已关闭的通道发送
  • 从一个已关闭的通道接收并立即返回零值

第一眼就看到了“向一个nil通道发送”,这看起来像是问题的原因。但是反复检查代码后, inChannel 是由 Metrics 初始化的,不可能为nil。

n你可能会注意到,使用 jq 命令获取到的信息中,没有 startInChannelConsumer 方法。会不会是因为在 main.(*Metrics).startInChannelConsumer 的某个地方阻塞而导致这个(可缓冲)通道满了?

Delve能够提供从开始位置到 userCurrentLoc 字段之间的初始位置信息,这个信息存储到 startLoc 字段中。使用下面的jq命令可以查询出所有goroutines,其初始位置都在函数 startInChannelConsumer 中:

$ jq '.result[] | select(.startLoc.function.name | test("startInChannelConsumer$"))' server-test-1_dlv-rpc-list_goroutines.json

{
  "id": 20,
  "currentLoc": {
    "pc": 4380603,
    "file": "/usr/local/go/src/runtime/proc.go",
    "line": 303,
    "function": {
      "name": "runtime.gopark",
      "value": 4380368,
      "type": 0,
      "goType": 0,
      "optimized": true
    }
  },
  "userCurrentLoc": {
    "pc": 6440847,
    "file": "/vagrant/example/server/metrics.go",
    "line": 105,
    "function": {
      "name": "main.(*Metrics).SetM",
      "value": 6440672,
      "type": 0,
      "goType": 0,
      "optimized": true
    }
  },
  "startLoc": {
    "pc": 6440880,
    "file": "/vagrant/example/server/metrics.go",
    "line": 109,
    "function": {
      "name": "main.(*Metrics).startInChannelConsumer",
      "value": 6440880,
      "type": 0,
      "goType": 0,
      "optimized": true
    }
  },
  ···
}
复制代码

结果中有一条信息非常振奋人心!

main.(*Metrics).startInChannelConsumer ,109行(看结果中的startLoc字段),有一个id为20的goroutines阻塞住了!

拿到goroutines的id能够大大降低我们搜索的范围(并且我们再也不用深入庞大的JSON文件了)。使用Delve的 goroutines 命令我们能够将当前goroutines切换到目标goroutines,然后可以使用 stack 命令打印该goroutines的堆栈信息:

$ dlv core example/server/server core.1628

(dlv) goroutine 20
Switched from 0 to 20 (thread 1628)

(dlv) stack -full
0  0x000000000042d7bb in runtime.gopark
   at /usr/local/go/src/runtime/proc.go:303
       lock = unsafe.Pointer(0xc000104058)
       reason = waitReasonChanSend
···
3  0x00000000004066a5 in runtime.chansend1
   at /usr/local/go/src/runtime/chan.go:125
       c = (unreadable empty OP stack)
       elem = (unreadable empty OP stack)

4  0x000000000062478f in main.(*Metrics).SetM
   at /vagrant/example/server/metrics.go:105
       key = (unreadable empty OP stack)
       m = (unreadable empty OP stack)
       value = (unreadable empty OP stack)

5  0x0000000000624e64 in main.(*Metrics).sendMetricsToOutChannel
   at /vagrant/example/server/metrics.go:146
       m = (*main.Metrics)(0xc000056040)
       scope = 0
       updateInterval = (unreadable could not find loclist entry at 0x89f76 for address 0x624e63)

6  0x0000000000624a2f in main.(*Metrics).startInChannelConsumer
   at /vagrant/example/server/metrics.go:127
       m = (*main.Metrics)(0xc000056040)
       inMetrics = main.Metric {Type: TypeCount, Scope: 0, Key: "server.req-incoming",...+2 more}
       nextUpdate = (unreadable could not find loclist entry at 0x89e86 for address 0x624a2e)
复制代码

从下往上分析:

(6)一个来自通道的新 inMetrics 值在 main.(*Metrics).startInChannelConsumer 中被接收

(5)我们调用 main.(*Metrics).sendMetricsToOutChannel 并且在 example/server/metrics.go 的146行进行处理

(4)然后 main.(*Metrics).SetM 被调用

一直运行到 runtime.gopark 中的 waitReasonChanSend 阻塞!

一切的一切都明朗了!

单个goroutines中,一个从缓冲通道读取数据的函数,同时也在往通道中发送数据。当进入通道的值达到通道的容量时,消费函数继续往已满的通道中发送数据就会造成自身的死锁。由于单个通道的消费者死锁,那么每一个尝试往通道中发送数据的请求都会被阻塞。

这就是我们的故事,使用上述调试技术帮助我们发现了问题的根源。那些代码是很多年前写的,甚至从没有人看过这些代码,也万万没有想到会导致这么大的问题。

如你所见,并不是所有问题都能由 工具 解决,但是工具能够帮助你更好地工作。我希望,通过此文能够激励你多多尝试这些工具。我非常乐意倾听你们处理类似问题的其它解决方案。

Vladimir 是一个后端开发工程师,目前就职于 adjust.com. @tvii on Twitter, @narqo on Github

via: blog.gopheracademy.com/advent-2018…

作者:Vladimir Varankin 译者: hantmac


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

交易系统

交易系统

武剑锋 / 上海人民出版社 / 2011-1 / 32.00元

《交易系统:更新与跨越》是中国第一部研究证券交易系统的专业著作,填补了这一领域的学术空白。既回顾和总结了系统规划、建设和上线过程中,技术管理、架构设计、应用调优、切换部署、运行维护等方面的经验和教训,也从较为宏观的角度描述了独具中国特色的交易技术支撑体系,特别是,通过分析其他资本市场交易系统的近年来发展历程和后续的技术发展规划,探索了未来业务创新和技术创新的大致框架和可能的模式。相信《交易系统:更......一起来看看 《交易系统》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

html转js在线工具
html转js在线工具

html转js在线工具