matlab练习程序(曲面拟合)

栏目: 编程工具 · 发布时间: 5年前

内容简介:这里用到的还是最小二乘方法,和上一次这篇文章原理差不多。就是首先构造最小二乘函数,然后对每一个系数计算偏导,构造矩阵乘法形式,最后解方程组。比如有一个二次曲面:z=ax^2+by^2+cxy+dx+ey+f

这里用到的还是最小二乘方法,和上一次这篇文章原理差不多。

就是首先构造最小二乘函数,然后对每一个系数计算偏导,构造矩阵乘法形式,最后解方程组。

比如有一个二次曲面:z=ax^2+by^2+cxy+dx+ey+f

首先构造最小二乘函数,然后计算系数偏导(我直接手写了):

matlab练习程序(曲面拟合)

解方程组(下图中A矩阵后面求和符号我就没写了啊),然后计算C:

matlab练习程序(曲面拟合)

代码如下:

clear all;
close all;
clc;

a=2;b=2;c=-3;d=1;e=2;f=30;   %系数         
n=1:0.2:20;
x=repmat(n,96,1);
y=repmat(n',1,96);
z=a*x.^2+b*y.^2+c*x.*y+d*x+e*y +f;      %原始模型     
surf(x,y,z)

N=100;
ind=int8(rand(N,2)*95+1);

X=x(sub2ind(size(x),ind(:,1),ind(:,2)));
Y=y(sub2ind(size(y),ind(:,1),ind(:,2)));
Z=z(sub2ind(size(z),ind(:,1),ind(:,2)))+rand(N,1)*20;       %生成待拟合点,加个噪声

hold on;
plot3(X,Y,Z,'o');

A=[N sum(Y) sum(X) sum(X.*Y) sum(Y.^2) sum(X.^2);
   sum(Y) sum(Y.^2) sum(X.*Y) sum(X.*Y.^2) sum(Y.^3) sum(X.^2.*Y);
   sum(X) sum(X.*Y) sum(X.^2) sum(X.^2.*Y) sum(X.*Y.^2) sum(X.^3);
   sum(X.*Y) sum(X.*Y.^2) sum(X.^2.*Y) sum(X.^2.*Y.^2) sum(X.*Y.^3) sum(X.^3.*Y);
   sum(Y.^2) sum(Y.^3) sum(X.*Y.^2) sum(X.*Y.^3) sum(Y.^4) sum(X.^2.*Y.^2);
   sum(X.^2) sum(X.^2.*Y) sum(X.^3) sum(X.^3.*Y) sum(X.^2.*Y.^2) sum(X.^4)];

B=[sum(Z) sum(Z.*Y) sum(Z.*X) sum(Z.*X.*Y) sum(Z.*Y.^2) sum(Z.*X.^2)]';

C=inv(A)*B;

z=C(6)*x.^2+C(5)*y.^2+C(4)*x.*y+C(3)*x+C(2)*y +C(1);           %拟合结果

mesh(x,y,z)

结果如下,深色曲面是原模型,浅色曲面是用噪声数据拟合的模型:

matlab练习程序(曲面拟合)


以上所述就是小编给大家介绍的《matlab练习程序(曲面拟合)》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

敏捷教练

敏捷教练

[英] Rachel Davies、[英] Liz Sedley / 徐毅、袁店明 / 清华大学出版社 / 2013-7 / 49.00元

《敏捷教练:如何打造优秀的敏捷团队》取材于国际知名敏捷教练的真实经历,展示了他们在辅导团队进行敏捷实践过程中所积累的辅导技巧,凝聚着他们在对敏捷辅导的真知灼见,每章还针对特定主题总结了在转型过程中教练和团队可能面对的障碍及其应对方案。 《敏捷教练:如何打造优秀的敏捷团队》具有较强的实用性和指导性,适合项目经理、技术总监和敏捷团队的所有成员阅读与参考。一起来看看 《敏捷教练》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具