numba加速python学习与尝试

栏目: Python · 发布时间: 5年前

内容简介:探索python性能优化工具,发现了numba. 只需要给函数加上装饰器就可以。比cython和pypy方便多了。numba是为了提高numpy速度而开发的,使用llvm将python代码翻译为bitcode,并在bitcode外面做了一层包装,让python可以调用通过numba翻译的代码由于经过llvm优化并可在机器上直接执行,效率将有所提高,对海量数据处理非常有帮助

简介

探索 python 性能优化工具,发现了numba. 只需要给函数加上装饰器就可以。比cython和pypy方便多了。

numba是什么

numba是为了提高numpy速度而开发的,使用llvm将python代码翻译为bitcode,并在bitcode外面做了一层包装,让python可以调用

通过numba翻译的代码由于经过llvm优化并可在机器上直接执行,效率将有所提高,对海量数据处理非常有帮助

numba可以解决什么问题

1.提高numpy速度
2.解决python在计算上的性能问题

原理

通过llvm编译器将python代码转换成机器码,提高执行效率。

初试

环境说明

python3.6
fedora

安装

pip install numba

示例

#斐波那契数列
import time
from numba import jit

@jit
def fib(n):
    if n<=2 :
        return 1;
    else:
        return fib(n-1)+fib(n-2);

start = time.time()
fib(50)
end = time.time()
print("python3+numba cost_seconds:", end-start)

#结果。结果很明显numba可以让你的python飞起来
python3        20.24455213546753
python3+numba  0.5986552238464355

文档

* 官方/文档

http://numba.pydata.org/

http://numba.pydata.org/numba-doc/latest/index.html

* 官方例子

https://numba.pydata.org/numba-examples/

* github

https://github.com/numba/numba

适用范围

操作系统: windows32/64, osx, linux32/64
架构: x86, x86_64, ppc64le. Experimental on armv7l, armv8l (aarch64).
GPUs:  Nvidia CUDA. Experimental on AMD ROC
CPython
Numpy1.10以上

注意要点

numba只适合解决python项目在计算上的性能问题,否则会导致项目性能下降。

引入前最好足够测试确保使用numba的姿势正确

来源

numba加速python学习与尝试

此生必看的科学实验-水知道答案

《了凡四训》详解之改过之法

印光大师十念法(胡小林主讲第1集)

精神病为什么治不好

百病之源


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Python语言程序设计

Python语言程序设计

[美]梁勇(Lang Y. D.) / 李娜 / 机械工业出版社 / 2015-4 / 79.00元

本书采用“问题驱动”、“基础先行”和“实例和实践相结合”的方式,讲述如何使用Python语言进行程序设计。本书首先介绍Python程序设计的基本概念,接着介绍面向对象程序设计方法,最后介绍算法与数据结构方面的内容。为了帮助学生更好地掌握相关知识,本书每章都包括以下模块:学习目标,引言,关键点,检查点,问题,本章总结,测试题,编程题,注意、提示和警告。 本书可以作为高等院校计算机及相关专业Py......一起来看看 《Python语言程序设计》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

MD5 加密
MD5 加密

MD5 加密工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具