内容简介:开源一个文本分析项目
Github
https://github.com/sea-boat/TextAnalyzer
TextAnalyzer
a text analizer that can analyze text. so far, it can extract hot words in a text segment by using tf-idf algorithm,at the same time using a score factor to optimize the final score.
also it provides machine learning to make a classification.
Features
extracting hot words from a text.
- to gather statistics via frequence.
- to gather statistics via by tf-idf algorithm
- to gather statistics via a score factor additionally.
synonym can be recognized
SVM Classificator
this analyzer supports to classify text by svm. it involves vectoring the text. we can train the samples and then make a classification by the model.
for convenience,the model,tfidf and vector will be stored.
kmeans clustering && xmeans clustering
this analyzer supports to clustering text by kmeans and xmeans.
vsm clustering
this analyzer supports to clustering text by vsm.
Dependence
https://github.com/sea-boat/IKAnalyzer-Mirror.git
TODO
- other ml algorithms.
- emotion analization.
How to use
just simple like this
extracting hot words
- indexing a document and get a docId.
long docId = TextIndexer.index(text);
- extracting by docId.
HotWordExtractor extractor = new HotWordExtractor(); List<Result> list = extractor.extract(0, 20, false); if (list != null) for (Result s : list) System.out.println(s.getTerm() + " : " + s.getFrequency() + " : " + s.getScore());
a result contains term,frequency and score.
失业证 : 1 : 0.31436604 户口 : 1 : 0.30099702 单位 : 1 : 0.29152703 提取 : 1 : 0.27927202 领取 : 1 : 0.27581802 职工 : 1 : 0.27381304 劳动 : 1 : 0.27370203 关系 : 1 : 0.27080503 本市 : 1 : 0.27080503 终止 : 1 : 0.27080503
SVM classificator
- training the samples.
SVMTrainer trainer = new SVMTrainer(); trainer.train();
- predicting text classification.
double[] data = trainer.getWordVector(text); trainer.predict(data);
kmeans clustering && xmeans clustering
List<String> list = DataReader.readContent(KMeansCluster.DATA_FILE); int[] labels = new KMeansCluster().learn(list);
vsm clustering
List<String> list = DataReader.readContent(VSMCluster.DATA_FILE); List<String> labels = new VSMCluster().learn(list);
==========广告时间==========
鄙人的新书《Tomcat内核设计剖析》已经在京东预售了,有需要的朋友可以到 https://item.jd.com/12185360.html 进行预定。感谢各位朋友。
=========================
欢迎关注:
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- [译] 高效的文本生成方法:LaserTagger 现已开源
- [译] 高效的文本生成方法:LaserTagger 现已开源
- Quill 1.3.3 发布,开源富文本编辑器
- Quill 1.3.4 发布,开源富文本编辑器
- Quill 1.3.5 发布,开源富文本编辑器
- 开源在线文档系统 MrDoc 开始支持富文本编辑器
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
迎接互联网的明天
邹静 / 电子工业 / 2011-6 / 55.00元
《迎接互联网的明天-玩转3D Web(附盘)》,全书共5章,第1章主要阐述了国内外空前繁荣的3D互联网技术领域,以及这些领域透射出来的潜在商机;第2章主要用当下比较流行的Flash编程语言ActionScript 3,来向大家介绍面向对象编程语言的思想概念,以及一些3D渲染技术的入门知识;第3章注重建模知识的运用,主要运用WireFusion和3ds Max来制作3D网页;第4章主要介绍3D游戏编......一起来看看 《迎接互联网的明天》 这本书的介绍吧!