内容简介:go通道基于go的并发调度实现,本身并不复杂,go并发调度请看我的这篇文章:go并发调度原理学习1.channel数据结构2.创建channel实现
go通道基于 go 的并发调度实现,本身并不复杂,go并发调度请看我的这篇文章:go并发调度原理学习
1.channel数据结构
type hchan struct { qcount uint // 缓冲区中已有元素个数 dataqsiz uint //循环队列容量大小 buf unsafe.Pointer // 缓冲区指针 elemsize uint16 //元素大小 closed uint32 //关闭标记,0没关闭,1关闭 elemtype *_type //数据项类型 sendx uint //发送索引 recvx uint //接收索引 recvq waitq //等待接收排队链表 sendq waitq //等待发送排队链表 lock mutex //锁 } type waitq struct { first *sudog last *sudog }
2.创建channel实现
创建channel实例:
ch := make(chan int, 4)
实现函数:
func makechan(t *chantype, size int64) *hchan
大致实现:
执行上面这行代码会new一个hchan结构,同时创建一个dataqsiz=4的int类型的循环队列,其实就是一个容纳4个元素的数组,就是按顺序往里面写数据,写满之后又从0开始写,这个顺序索引就是hchan.sendx
3.发送数据
发送数据实例:
ch <- 100
发送数据实现函数:
func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool
ep指向要发送数据的首地址
func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool { lock(&c.lock) if c.closed != 0 { unlock(&c.lock) panic(plainError("send on closed channel")) } if sg := c.recvq.dequeue(); sg != nil { //缓冲区就是一个固定长度的循环列表 //发送队列是一个双向链表,接在缓冲区的后面,整体是一个队列,保证先进先出 //有接收者,并不是将当前要发送的数据直接发出,而是将缓冲区的第一个元素发送给接收者,同时将发送队列的第一个元素加入缓冲区刚出队列的位置 send(c, sg, ep, func() { unlock(&c.lock) }, 3) return true } if c.qcount < c.dataqsiz { //缓冲区没有满,直接将要发送的数据复制到缓冲区,直接返回, qp := chanbuf(c, c.sendx) typedmemmove(c.elemtype, qp, ep) c.sendx++ if c.sendx == c.dataqsiz { c.sendx = 0 } c.qcount++ unlock(&c.lock) return true } if !block { unlock(&c.lock) return false } //以上都是同步非阻塞的,ch <- 100直接返回 //以下是同步阻塞 //缓冲区满了,也没有接收者,通道将被阻塞,其实就是不执行当前G了,将状态改成等待状态 gp := getg() mysg := acquireSudog() c.sendq.enqueue(mysg) goparkunlock(&c.lock, "chan send", traceEvGoBlockSend, 3) //当G被唤醒,状态改成可执行状态,从这里开始继续执行 releaseSudog(mysg) return true }
大致实现:
1:接收队列不为空,从接收队列中取出第一个接收者*sudog,将数据复制到sudog.elem,复制函数为memmove用汇编实现,通知接收方数据给你了,将接收方协程由等待状态改成可运行状态,将当前协程加入协程队列,等待被调度。
2:没有接收者,有缓冲区且没有满,直接将数据复制到缓冲中,写入缓冲区的位置为hchan.buf[sendx++],如果缓冲区已满sendx=0,就是循环队列的实现,往sendx指定的位置写数据,hchan.qcount++
3:没有接收者,没有缓冲区或是满了,则从当前协程对应的P的sudog队列中取一个struct sudog,将数据复制到sudog.elem,将sudog加入sendq队列中,通知接收方,当前流程阻塞,等待被唤醒,接收方收到通知后(被唤醒),继续往下执行,接收数据完成后会通知发送方,即将发送方协程状态由等待状态改成可运行状态,加入协程可运行队列,等着被执行
不会阻塞的情况:
1:通道缓冲区没有满之前,因为只是将要发送的数据复制到缓冲区就返回了
2:有接收者的情况,有数据复制到接收方的数据结构中(不是最终接收数据的变量,在执行接收函数的时候会拷贝到最终接收数据的变量),唤醒接收协程
会阻塞的情况:
自然就是缓冲区满了,也没有接收方,这个时候会将数据打包放到发送队列,当前协程被设置成等待状态,这个状态不会被调度,当有接收方收到数据后,才会被唤醒
通知函数:
goready(gp *g, traceskip int)
4.接收数据
接收数据实例:
val := <- ch
接收数据实现函数:
func chanrecv(c *hchan, ep unsafe.Pointer, block bool) (selected, received bool) func chanrecv(c *hchan, ep unsafe.Pointer, block bool) (selected, received bool) { lock(&c.lock) if sg := c.sendq.dequeue(); sg != nil { // Found a waiting sender. If buffer is size 0, receive value // directly from sender. Otherwise, receive from head of queue // and add sender's value to the tail of the queue (both map to // the same buffer slot because the queue is full). recv(c, sg, ep, func() { unlock(&c.lock) }, 3) return true, true } if c.qcount > 0 { // Receive directly from queue qp := chanbuf(c, c.recvx) if ep != nil { typedmemmove(c.elemtype, ep, qp) } typedmemclr(c.elemtype, qp) c.recvx++ if c.recvx == c.dataqsiz { c.recvx = 0 } c.qcount-- unlock(&c.lock) return true, true } if !block { unlock(&c.lock) return false, false } //以上同步非阻塞 //以下同步阻塞 gp := getg() mysg := acquireSudog() c.recvq.enqueue(mysg) //将当前G状态改成等待状态,停止调度 goparkunlock(&c.lock, "chan receive", traceEvGoBlockRecv, 3) //当前G被唤醒从这里继续执行 mysg.c = nil releaseSudog(mysg) return true, !closed }
大致实现:
1.发送队列不为空(说明缓冲区已满),从发送队列中取出第一个发送者*sudog
1.1.没有缓冲区,直接将发送队列中的数据sudog.elem复制出来,存到接收数据的变量val中,通知发送方我处理完了,你可以继续执行
1.2.有缓冲区,复制出缓冲区hchan.buf[recvx]对应的元素到val,在将发送方sudog.elem复制到hchan.buf[recvx],发送方按顺序写,接收方按顺序读,典型的FIFO,为了保证是先进先出,所以先复制出,再将队列首元素复制到对应的缓冲区中,其实就是发送队列连接在缓冲区后面,缓冲区满了,就写队列,接收的时候先从缓冲区中拿数据,拿掉之后空出来的位置从发送队列中取第一个填满,并唤醒对应的G,只要发送队列不为空,缓冲区肯定会被填满
2.发送队列为空,缓冲区不为空,复制出缓冲区hchan.buf[recvx]对应的元素到val,hchan.qcount--
3.发送队列为空,缓冲区也为空,那就是没有任何待接收的数据,接收流程就只能等了,将接收信息打包成sudog,加入接收队列recvq,当前执行流程阻塞,等有发送数据后会被唤醒继续
5.channel FIFO在解释一次
5.1:缓冲区没满,发送数据就是进缓冲队列,接收数据就是出缓冲队列,比较好理解
5.2:缓冲区已满,发送数据就是进等待队列,接收数据先出缓冲队列,即为要接收的数据,等待队列出列,将数据存在缓冲队列刚出列的位置,刚出列的位置相当于缓冲队列的末尾,也就是说等待队列的列头连在缓冲队列的末尾,将等待队列的列头加入缓存队列的列尾,保证了缓冲队列是满的,减少的是缓冲队列中的数据,保证先进先出
5.3:接收数据,缓冲队列或等待队列有数据,拿走第一个,保证等待队列是接在缓冲区末尾,即缓冲区末尾有空缺,就让等待队列出列,并填充至缓冲区末尾,否则将自己打包加入接收队列,当前G进入等待状态,有数据发送自然会通知你
总结:Go channel基于go的并发调度实现阻塞和非阻塞两种通讯方式
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- Docker实现原理之 - OverlayFS实现原理
- 微热山丘,探索 IoC、AOP 实现原理(二) AOP 实现原理
- 带你了解vue计算属性的实现原理以及vuex的实现原理
- Docker原理之 - CGroup实现原理
- AOP如何实现及实现原理
- webpack 实现 HMR 及其实现原理
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Pro CSS Techniques
Jeff Croft、Ian Lloyd、Dan Rubin / Apress / 2009-5-4 / GBP 31.49
Web Standards Creativity: Innovations in Web Design with CSS, DOM Scripting, and XHTML一起来看看 《Pro CSS Techniques》 这本书的介绍吧!